Calibration study of the CCSD(T)-F12a/b methods for C2 and small hydrocarbons

被引:56
作者
Feller, David [1 ]
Peterson, Kirk A. [1 ]
Hill, J. Grant [1 ]
机构
[1] Washington State Univ, Dept Chem, Pullman, WA 99164 USA
基金
美国国家科学基金会;
关键词
GAUSSIAN-BASIS SETS; CORRELATED MOLECULAR CALCULATIONS; CONSISTENT BASIS-SETS; ELECTRONIC-STRUCTURE CALCULATIONS; COUPLED-CLUSTER THEORY; EQUILIBRIUM GEOMETRIES; TRIPLE EXCITATIONS; WAVE-FUNCTIONS; HARTREE-FOCK; CONVERGENCE;
D O I
10.1063/1.3491809
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Explicitly correlated CCSD(T)-F12a/b methods combined with basis sets specifically designed for this technique have been tested for their ability to reproduce standard CCSD(T) benchmark data covering 16 small molecules composed of hydrogen and carbon. The standard method calibration set was obtained with very large one-particle basis sets, including some aug-cc-pV7Z and aug-cc-pV8Z results. Whenever possible, the molecular properties (atomization energies, structures, and harmonic frequencies) were extrapolated to the complete basis set limit in order to facilitate a direct comparison of the standard and explicitly correlated approaches without ambiguities arising from the use of different basis sets. With basis sets of triple-zeta quality or better, the F12a variant was found to overshoot the presumed basis set limit, while the F12b method converged rapidly and uniformly. Extrapolation of F12b energies to the basis set limit was found to be very effective at reproducing the best standard method atomization energies. Even extrapolations based on the small cc-pVDZ-F12/cc-pVTZ-F12 combination proved capable of a mean absolute deviation of 0.20 kcal/mol. The accuracy and simultaneous cost savings of the F12b approach are such that it should enable high quality property calculations to be performed on chemical systems that are too large for standard CCSD (T). (C) 2010 American Institute of Physics. [doi:10.1063/1.3491809]
引用
收藏
页数:17
相关论文
共 75 条
[1]   A simple and efficient CCSD(T)-F12 approximation [J].
Adler, Thomas B. ;
Knizia, Gerald ;
Werner, Hans-Joachim .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (22)
[2]   GENERAL CONTRACTION OF GAUSSIAN-BASIS SETS .1. ATOMIC NATURAL ORBITALS FOR 1ST-ROW AND 2ND-ROW ATOMS [J].
ALMLOF, J ;
TAYLOR, PR .
JOURNAL OF CHEMICAL PHYSICS, 1987, 86 (07) :4070-4077
[3]  
[Anonymous], MOLPRO, version 2009.1, a package of abinitio program.
[4]  
[Anonymous], 2005, DALTON MOL ELECT STR
[5]   The accurate determination of molecular equilibrium structures [J].
Bak, KL ;
Gauss, J ;
Jorgensen, P ;
Olsen, J ;
Helgaker, T ;
Stanton, JF .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (15) :6548-6556
[6]   Systematically convergent basis sets for transition metals.: I.: All-electron correlation consistent basis sets for the 3d elements Sc-Zn -: art. no. 064107 [J].
Balabanov, NB ;
Peterson, KA .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (06)
[7]   The CCSD(T) complete basis set limit for Ne revisited [J].
Barnes, Ericka C. ;
Petersson, George A. ;
Feller, David ;
Peterson, Kirk A. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (19)
[8]   Coupled-cluster theory in quantum chemistry [J].
Bartlett, Rodney J. ;
Musial, Monika .
REVIEWS OF MODERN PHYSICS, 2007, 79 (01) :291-352
[9]   High-accuracy extrapolated ab initio thermochemistry.: II.: Minor improvements to the protocol and a vital simplification [J].
Bomble, Yannick J. ;
Vazquez, Juana ;
Kallay, Mihaly ;
Michauk, Christine ;
Szalay, Peter G. ;
Csaszar, Attila G. ;
Gauss, Juergen ;
Stanton, John F. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (06)
[10]   ABINITIO VIBRATION-ROTATION COUPLING-CONSTANTS AND THE EQUILIBRIUM GEOMETRIES OF NCCN AND CNCN [J].
BOTSCHWINA, P ;
FLUGGE, J .
CHEMICAL PHYSICS LETTERS, 1991, 180 (06) :589-593