Some global uniqueness and solvability results for linear complementarity problems over symmetric cones

被引:66
作者
Gowda, M. Seetharama [1 ]
Sznajder, R.
机构
[1] Univ Maryland, Dept Math & Stat, Baltimore, MD 21250 USA
[2] Bowie State Univ, Dept Math, Bowie, MD 20715 USA
关键词
Euclidean Jordan algebra; symmetric cone; algebra/cone automorphism; R-0-property; Q-property; GUS-property;
D O I
10.1137/06065943X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with linear complementarity problems over symmetric cones. Our objective here is to characterize global uniqueness and solvability properties for linear transformations that leave the symmetric cone invariant. Specifically, we show that, for algebra automorphisms on the Lorentz space L-n and for quadratic representations on any Euclidean Jordan algebra, global uniqueness, global solvability, and the R-0 properties are equivalent. We also show that for Lyapunov-like transformations, the global uniqueness property is equivalent to the transformation being positive stable and positive semidefi nite.
引用
收藏
页码:461 / 481
页数:21
相关论文
共 27 条
[1]  
[Anonymous], INTRO PIECEWISE DIFF
[2]  
Berman A., 1994, CLASSICS APPL MATH, DOI [10.1016/C2013-0-10361-3, 10.1137/1.9781611971262, DOI 10.1137/1.9781611971262]
[3]  
BHIMASANKARAM P, 2001, COMPLEMENTARITY PROB
[4]  
COTTLE RW, 1992, LINEAR CONMPLEMENTAR
[5]   Positive groups on Hn are completely positive [J].
Damm, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 393 :127-137
[6]  
Elsner L., 1974, LINEAR ALGEBRA APPL, V8, P249
[7]  
Facchinei F, 2003, Finite-Dimensional Variational Inequalities and Complementary Problems, VII
[8]  
Faraut J., 1994, Analysis on symmetric cones
[9]   An analysis of zero set and global error bound properties of a piecewise affine function via its recession function [J].
Gowda, MS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (03) :594-609
[10]   On semidefinite linear complementarity problems [J].
Gowda, MS ;
Song, Y .
MATHEMATICAL PROGRAMMING, 2000, 88 (03) :575-587