Glucose metabolism in cancer - Importance of transcription factor-DNA interactions within a short segment of the proximal region of the type II hexokinase promoter

被引:50
作者
Lee, MG [1 ]
Pedersen, PL [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Biol Chem, Baltimore, MD 21205 USA
关键词
D O I
10.1074/jbc.M307031200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A common signature of many cancers is a high glucose catabolic rate frequently dependent on the overexpression of Type II hexokinase (HKII), a mitochondrial bound enzyme that also suppresses cell death. As the tumor HKII promoter plays a significant role in HKII overexpression, studies reported here were undertaken to identify both the major regions and transcription factors involved under tumor-like conditions. Reporter gene assays following transfection of hepatoma cells with decreasing segments of the HKII promoter traced its known strength to the proximal region (- 281 to - 35). Mutational analyses showed that in this short region GC boxes 1, 2, 5, and 6, a CCAAT box, an inverted CCAAT box, and CRE are involved in promoter activation. Other studies demonstrated binding of transcription factors Sp1, Sp2, and Sp3 to GC boxes 1 and 6, Sp1 and Sp2 to GC boxes 2 and 5, NF-Y to CCAAT boxes, and CREB, ATF1, and CREM to CRE. In addition, transfection studies involving Sp1, Sp2, Sp3, CREB, and NFY ( dominant negative form) provided evidence that these proteins are promoter activators. Finally, alignment of available HK proximal promoters showed strong conservation only among HKII sequences. These findings implicate signaling pathways directed to a short segment of the proximal region of the HKII promoter as major contributors to HKII overexpression in many cancers.
引用
收藏
页码:41047 / 41058
页数:12
相关论文
共 52 条
[1]   A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos [J].
Ahn, S ;
Olive, M ;
Aggarwal, S ;
Krylov, D ;
Ginty, DD ;
Vinson, C .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (02) :967-977
[2]  
Aisenberg A. C., 1961, GLYCOLYSIS RESP TUMO
[3]   Casein kinase II-mediated phosphorylation of the C terminus of spl decreases its DNA binding activity [J].
Armstrong, SA ;
Barry, DA ;
Leggett, RW ;
Mueller, CR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (21) :13489-13495
[4]  
ARORA KK, 1988, J BIOL CHEM, V263, P17422
[5]  
BURK D, 1967, JNCI-J NATL CANCER I, V38, P839
[6]  
BUSTAMANTE E, 1981, J BIOL CHEM, V256, P8699
[7]   HIGH AEROBIC GLYCOLYSIS OF RAT HEPATOMA-CELLS IN CULTURE - ROLE OF MITOCHONDRIAL HEXOKINASE - (L-LACTIC ACID-D-GLUCOSE-D-GALACTOSE-LIVER-NEOPLASIA) [J].
BUSTAMANTE, E ;
PEDERSEN, PL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (09) :3735-3739
[8]   ANALYSIS OF SP1 INVIVO REVEALS MULTIPLE TRANSCRIPTIONAL DOMAINS, INCLUDING A NOVEL GLUTAMINE-RICH ACTIVATION MOTIF [J].
COUREY, AJ ;
TJIAN, R .
CELL, 1988, 55 (05) :887-898
[9]   ACCURATE TRANSCRIPTION INITIATION BY RNA POLYMERASE-II IN A SOLUBLE EXTRACT FROM ISOLATED MAMMALIAN NUCLEI [J].
DIGNAM, JD ;
LEBOVITZ, RM ;
ROEDER, RG .
NUCLEIC ACIDS RESEARCH, 1983, 11 (05) :1475-1489
[10]  
DINOCERA PP, 1983, P NATL ACAD SCI-BIOL, V80, P7095