Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction

被引:172
作者
Jensen, Thomas E.
Rose, Adam J.
Jorgensen, Sebastian B.
Brandt, Nina
Schjerling, Peter
Wojtaszewski, Jorgen F. P.
Richter, Erik A.
机构
[1] Univ Copenhagen, Copenhagen Muscle Res Ctr, Inst Exercise & Sport Sci, Dept Human Physiol, DK-2100 Copenhagen, Denmark
[2] Rigshosp, Copenhagen Muscle Res Ctr, Dept Mol Muscle Biol, DK-2100 Copenhagen, Denmark
[3] Univ Copenhagen, Dept Med Biochem & Genet, DK-2100 Copenhagen, Denmark
来源
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM | 2007年 / 292卷 / 05期
关键词
KN-93; STO-609; calmodulin kinase kinase;
D O I
10.1152/ajpendo.00456.2006
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The Ca2+/calmodulin (CaM) competitive inhibitor KN-93 has previously been used to evaluate 5'-AMP-activated protein kinase (AMPK)-independent Ca2+-signaling to contraction-stimulated glucose uptake in muscle during intense electrical stimulation ex vivo. With the use of low-intensity tetanic contraction of mouse soleus and extensor digitorum longus (EDL) muscles ex vivo, this study demonstrates that KN-93 can potently inhibit AMPK phosphorylation and activity after 2 min but not 10 min of contraction while strongly inhibiting contraction-stimulated 2-deoxyglucose uptake at both the 2- and 10-min time points. These data suggest inhibition of Ca2+/CaM-dependent signaling events upstream of AMPK, the most likely candidate being the novel AMPK kinase CaM-dependent protein kinase kinase ( CaMKK). CaMKK protein expression was detected in mouse skeletal muscle. Similar to KN-93, the CaMKK inhibitor STO-609 strongly reduced AMPK phosphorylation and activity at 2 min and less potently at 10 min. Pretreatment with STO-609 inhibited contraction-stimulated glucose uptake at 2 min in soleus, but not EDL, and in both muscles after 10 min. Neither KN-93 nor STO-609 inhibited 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside-stimulated glucose uptake, AMPK phosphorylation, or recombinant LKB1 activity, suggestive of an LKB1-independent effect. Finally, neither KN-93 nor STO-609 had effects on the reductions in glucose uptake seen in mice overexpressing a kinase-dead AMPK construct, indicating that the effects of KN-93 and STO-609 on glucose uptake require inhibition of AMPK activity. We propose that CaMKKs act in mouse skeletal muscle regulating AMPK phosphorylation and glucose uptake at the onset of mild tetanic contraction and that an intensity- and/or time-dependent switch occurs in the relative importance of AMPKKs during contraction.
引用
收藏
页码:E1308 / E1317
页数:10
相关论文
共 59 条
[1]   Effect of fiber type and nutritional state on AICAR- and contraction-stimulated glucose transport in rat muscle [J].
Ai, H ;
Ihlemann, J ;
Hellsten, Y ;
Lauritzen, HPMM ;
Hardie, DG ;
Galbo, H ;
Ploug, T .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2002, 282 (06) :E1291-E1300
[2]   Skeletal muscle adaptation in response to voluntary running in Ca2+/calmodulin-dependent protein kinase IV-deficient mice [J].
Akimoto, T ;
Ribar, TJ ;
Williams, RS ;
Yan, Z .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2004, 287 (05) :C1311-C1319
[3]   Myocardial ischemia differentially regulates LKB1 and an alternate 5′-AMP-activated protein kinase kinase [J].
Altarejos, JY ;
Taniguchi, M ;
Clanachan, AS ;
Lopaschuk, GD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (01) :183-190
[4]   The 5′-AMP-activated protein kinase γ3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle [J].
Barnes, BR ;
Marklund, S ;
Steiler, TL ;
Walter, M ;
Hjälm, G ;
Amarger, V ;
Mahlapuu, M ;
Leng, Y ;
Johansson, C ;
Galuska, D ;
Lindgren, K ;
Åbrink, M ;
Stapleton, D ;
Zierath, JR ;
Andersson, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (37) :38441-38447
[5]   Dual mechanisms regulating AMPK kinase action in the ischemic heart [J].
Baron, SJ ;
Li, J ;
Russell, RR ;
Neumann, D ;
Miller, EJ ;
Tuerk, R ;
Wallimann, T ;
Hurley, RL ;
Witters, LA ;
Young, LH .
CIRCULATION RESEARCH, 2005, 96 (03) :337-345
[6]   1-[N,O-bis-(5-isoquinolinesulphonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN-62), an inhibitor of calcium-dependent camodulin protein kinase II, inhibits both insulin- and hypoxia-stimulated glucose transport in skeletal muscle [J].
Brozinick, JT ;
Reynolds, TH ;
Dean, D ;
Cartee, G ;
Cushman, SW .
BIOCHEMICAL JOURNAL, 1999, 339 :533-540
[7]   Neuregulins mediate calcium-induced glucose transport during muscle contraction [J].
Canto, Carles ;
Chibalin, Alexander V. ;
Barnes, Brian R. ;
Glund, Stephan ;
Suarez, Elisabet ;
Ryder, Jeffrey W. ;
Palacin, Manuel ;
Zierath, Juleen R. ;
Zorzano, Antonio ;
Guma, Anna .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (31) :21690-21697
[8]   STIMULATION OF GLUCOSE-TRANSPORT IN SKELETAL-MUSCLE BY HYPOXIA [J].
CARTEE, GD ;
DOUEN, AG ;
RAMLAL, T ;
KLIP, A ;
HOLLOSZY, JO .
JOURNAL OF APPLIED PHYSIOLOGY, 1991, 70 (04) :1593-1600
[9]   Inhibition of interleukin-1β-induced NF-κB activation by calcium/calmodulin-dependent protein kinase kinase occurs through Akt activation associated with interleukin-1 receptor-associated kinase phosphorylation and uncoupling of MyD88 [J].
Chen, BC ;
Wu, WT ;
Ho, FM ;
Lin, WW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (27) :24169-24179
[10]   Defining Ca2+/calmodulin-dependent protein kinase cascades in transcriptional regulation [J].
Corcoran, EE ;
Means, AR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (05) :2975-2978