Structure of HoxA9 and Pbx1 bound to DNA: Hox hexapeptide and DNA recognition anterior to posterior

被引:161
作者
LaRonde-LeBlanc, NA
Wolberger, C [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Biophys & Biophys Chem, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, Howard Hughes Med Inst, Baltimore, MD 21205 USA
关键词
HoxA9; Pbx1; Hox; posterior prevalence; DNA binding;
D O I
10.1101/gad.1103303
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The HOX/HOM superfamily of homeodomain proteins controls cell fate and segmental embryonic patterning by a mechanism that is conserved in all metazoans. The linear arrangement of the Hox genes on the chromosome correlates with the spatial distribution of HOX protein expression along the anterior-posterior axis of the embryo. Most HOX proteins bind DNA cooperatively with members of the PBC family of TALE-type homeodomain proteins, which includes human Pbx1. Cooperative DNA binding between HOX and PBC proteins requires a residue N-terminal to the HOX homeodomain termed the hexapeptide, which differs significantly in sequence between anterior- and posterior-regulating HOX proteins. We report here the 1.9-Angstrom-resolution structure of a posterior HOX protein, HoxA9, complexed with Pbx1 and DNA, which reveals that the posterior Hox hexapeptide adopts an altered conformation as compared with that seen in previously determined anterior HOX/PBC structures. The additional nonspecific interactions and altered DNA conformation in this structure account for the stronger DNA-binding affinity and altered specificity observed for posterior HOX proteins when compared with anterior HOX proteins. DNA-binding studies of wild-type and mutant HoxA9 and HoxB1 show residues in the N-terminal arm of the homeodomains are critical for proper DNA sequence recognition despite lack of direct contact by these residues to the DNA bases. These results help shed light on the mechanism of transcriptional regulation by HOX proteins and show how DNA-binding proteins may use indirect contacts to determine sequence specificity.
引用
收藏
页码:2060 / 2072
页数:13
相关论文
共 42 条
[1]   Phosphorylation status of the SCR homeodomain determines its functional activity:: essential role for protein phosphatase 2A,B′ [J].
Berry, M ;
Gehring, W .
EMBO JOURNAL, 2000, 19 (12) :2946-2957
[2]   DETERMINATION OF THE NUCLEAR-MAGNETIC-RESONANCE SOLUTION STRUCTURE OF AN ANTENNAPEDIA HOMEODOMAIN-DNA COMPLEX [J].
BILLETER, M ;
QIAN, YQ ;
OTTING, G ;
MULLER, M ;
GEHRING, W ;
WUTHRICH, K .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 234 (04) :1084-1094
[3]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[4]   Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals [J].
Burglin, TR .
NUCLEIC ACIDS RESEARCH, 1997, 25 (21) :4173-4180
[5]   THE DNA-BINDING SPECIFICITY OF ULTRABITHORAX IS MODULATED BY COOPERATIVE INTERACTIONS WITH EXTRADENTICLE, ANOTHER HOMEOPROTEIN [J].
CHAN, SK ;
JAFFE, L ;
CAPOVILLA, M ;
BOTAS, J ;
MANN, RS .
CELL, 1994, 78 (04) :603-615
[6]   PBX PROTEINS DISPLAY HEXAPEPTIDE-DEPENDENT COOPERATIVE DNA-BINDING WITH A SUBSET OF HOX PROTEINS [J].
CHANG, CP ;
SHEN, WF ;
ROZENFELD, S ;
LAWRENCE, HJ ;
LARGMAN, C ;
CLEARY, ML .
GENES & DEVELOPMENT, 1995, 9 (06) :663-674
[7]  
Chang CP, 1996, MOL CELL BIOL, V16, P1734
[8]   LEVELS OF HOMEOTIC PROTEIN FUNCTION CAN DETERMINE DEVELOPMENTAL IDENTITY - EVIDENCE FROM LOW-LEVEL EXPRESSION OF THE DROSOPHILA HOMEOTIC GENE PROBOSCIPEDIA UNDER HSP7O CONTROL [J].
CRIBBS, DL ;
BENASSAYAG, C ;
RANDAZZO, FM ;
KAUFMAN, TC .
EMBO JOURNAL, 1995, 14 (04) :767-778
[9]  
DOUBOULE D, 1994, GUIDEBOOK HOMEOBOX G, P575
[10]  
DUBOULE D, 1994, DEVELOPMENT, P135