Anion competition for a volume-regulated current

被引:20
作者
Levitan, I [1 ]
Garber, SS [1 ]
机构
[1] Allegheny Univ Hlth Sci, Dept Physiol, Philadelphia, PA 19129 USA
关键词
D O I
10.1016/S0006-3495(98)77509-5
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We have examined whether the anionic amino acids, glutamate and aspartate, permeate through the same volume-regulated conductance permeant to Cl- ions. Cell swelling was initiated in response to establishing a whole-cell configuration in the presence of a hyposmotic gradient. Volume-regulated anion currents carried by Cl-, glutamate, or aspartate developed with similar time courses and showed similar voltage-dependent inactivation. Permeability ratios (P-aa/P-Cl) calculated from measured reversal potentials were dependent on the mole fraction ratio (MFR) of the permeant anions ([aa]/([aa] + [Cl-])). MFR was varied from 0.00 to 0.97. As the fraction of amino acid increased, P-aa/P-Cl decreased. Current amplitude was similarly dependent on MFR. These results show that the permeation of anionic amino acids and that of Cl- ions are not independent of each other, indicating that the ion channel underlying the volume-regulated conductance can be occupied by more than one ion at a time. Application of Eyring rate theory indicated that the major barrier to Cl- ion permeation is at the intracellular side of the membrane, and that the major barrier to amino acid permeation is at the extracellular side of the membrane. The interactions between these permeant ions may have a physiological modulatory role in volume regulation through a volume-regulated anion conductance.
引用
收藏
页码:226 / 235
页数:10
相关论文
共 33 条
[1]  
[Anonymous], REC CHEM PROG
[2]   ANION CHANNELS FOR AMINO-ACIDS IN MDCK CELLS [J].
BANDERALI, U ;
ROY, G .
AMERICAN JOURNAL OF PHYSIOLOGY, 1992, 263 (06) :C1200-C1207
[3]   LIQUID JUNCTION POTENTIALS AND SMALL-CELL EFFECTS IN PATCH-CLAMP ANALYSIS [J].
BARRY, PH ;
LYNCH, JW .
JOURNAL OF MEMBRANE BIOLOGY, 1991, 121 (02) :101-117
[4]  
BEGENISICH T, 1984, CURR TOP MEMBR TRANS, V22, P353
[5]   SODIUM-CHANNEL PERMEATION IN SQUID AXONS .1. REVERSAL POTENTIAL EXPERIMENTS [J].
BEGENISICH, TB ;
CAHALAN, MD .
JOURNAL OF PHYSIOLOGY-LONDON, 1980, 307 (OCT) :217-242
[6]   ANISOSMOTIC CELL-VOLUME REGULATION - A COMPARATIVE VIEW [J].
CHAMBERLIN, ME ;
STRANGE, K .
AMERICAN JOURNAL OF PHYSIOLOGY, 1989, 257 (02) :C159-C173
[7]  
Deutsch C., 1988, RENAL PHYSL BIOCH, V11, P260
[8]   Molecular identification of a volume-regulated chloride channel [J].
Duan, D ;
Winter, C ;
Cowley, S ;
Hume, JR ;
Horowitz, B .
NATURE, 1997, 390 (6658) :417-421
[9]   STRUCTURE AND FUNCTION OF CHANNELS AND CHANNELOGS AS STUDIED BY COMPUTATIONAL CHEMISTRY [J].
EISENMAN, G ;
ALVAREZ, O .
JOURNAL OF MEMBRANE BIOLOGY, 1991, 119 (02) :109-132
[10]   IMPROVED PATCH-CLAMP TECHNIQUES FOR HIGH-RESOLUTION CURRENT RECORDING FROM CELLS AND CELL-FREE MEMBRANE PATCHES [J].
HAMILL, OP ;
MARTY, A ;
NEHER, E ;
SAKMANN, B ;
SIGWORTH, FJ .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1981, 391 (02) :85-100