Stabilization of xLi2MnO3•(1-x)LiMO2 electrode surfaces (M = Mn, Ni, Co) with mildly acidic, fluorinated solutions

被引:95
作者
Kang, S. -H. [1 ]
Thackeray, M. M. [1 ]
机构
[1] Argonne Natl Lab, Battery Dept, Div Chem Engn, Argonne, IL 60439 USA
关键词
D O I
10.1149/1.2834904
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
It has been demonstrated previously that Li2MnO3-stabilized LiMO2 electrodes [xLi(2)MnO(3)center dot(1 - x)LiMO2, M = Mn, Ni, Co] can provide anomalously high electrochemical capacities (similar to 250 mAh/g) if charged to high potentials (>4.6 V). High- voltage charging results in an irreversible capacity loss on the initial charge/discharge cycle; it also damages the electrode surface, leading to a high cell impedance. In this paper, we report that preconditioning 0.1Li(2)MnO(3)center dot 0.9LiMn(0.256)Ni(0.372)Co(0.372)O(2) electrode powders [alternatively Li-1.048(Mn0.333Ni0.333Co0.333)(0.952)O-2 in Li1+xM1-xO2 notation] with extremely mild acidic solutions of NH4PF6, (NH4)(3)AlF6, and NH4BF4 salts in water and methanol (pH 6-6.5) leads to remarkable cycling stability of both lithium half- cells and full lithium-ion cells when repeatedly charged to high voltages (>= 4.5 V). The enhanced electrochemical performance is attributed to stabilized electrode surfaces that are etched and passivated by fluorinated species. The low- temperature behavior of unconditioned and preconditioned electrodes is presented. (c) 2008 The Electrochemical Society.
引用
收藏
页码:A269 / A275
页数:7
相关论文
共 32 条
[1]   Aging characteristics of high-power lithium-ion cells with LiNi0.8Co0.15Al0.05O2 and Li4/3Ti5/3O4 electrodes [J].
Abraham, DP ;
Reynolds, EM ;
Sammann, E ;
Jansen, AN ;
Dees, DW .
ELECTROCHIMICA ACTA, 2005, 51 (03) :502-510
[2]   Suppression of structural degradation of LiNi0.9Co0.1O2 cathode at 90 °C by AlPO4-nanoparticle coating [J].
Ahn, Donggi ;
Lee, Joon-Gon ;
Lee, Jin Sun ;
Kim, Jisuk ;
Cho, Jaephil ;
Park, Byungwoo .
CURRENT APPLIED PHYSICS, 2007, 7 (02) :172-175
[3]  
AMATUCCI GG, 2007, 212 EL SOC M ABSTR
[4]   Electrochemical performance of LBO-coated spinel lithium manganese oxide as cathode material for Li-ion battery [J].
Chan, HW ;
Duh, JG ;
Sheen, SR .
SURFACE & COATINGS TECHNOLOGY, 2004, 188 :116-119
[5]  
Cho J, 2001, ANGEW CHEM INT EDIT, V40, P3367, DOI 10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO
[6]  
2-A
[7]   Superior capacity retention spinel oxyfluoride cathodes for lithium-ion batteries [J].
Choi, W ;
Manthiram, A .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (05) :A245-A248
[8]   PHASE-DIAGRAM OF LIXC6 [J].
DAHN, JR .
PHYSICAL REVIEW B, 1991, 44 (17) :9170-9177
[9]   Anomalous capacity and cycling stability of xLi2MnO3•(1-x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50°C [J].
Johnson, Christopher S. ;
Li, Naichao ;
Lefief, Christina ;
Thackeray, Michael M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (04) :787-795
[10]   The significance of the Li2MnO3 component in 'composite' xLi2MnO3 • (1-x)LiMn0.5Ni0.5O2 electrodes [J].
Johnson, CS ;
Kim, JS ;
Lefief, C ;
Li, N ;
Vaughey, JT ;
Thackeray, MM .
ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (10) :1085-1091