Renewable hydrogen production

被引:802
作者
Turner, John [1 ]
Sverdrup, George [1 ]
Mann, Margaret K. [1 ]
Maness, Pin-Ching [1 ]
Kroposki, Ben [1 ]
Ghirardi, Maria [1 ]
Evans, Robert J. [1 ]
Blake, Dan [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
基金
欧盟地平线“2020”;
关键词
hydrogen production; renewable energy; electrolysis; solar; wind energy; photobiology; biomass;
D O I
10.1002/er.1372
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The U.S. Department of Energy and the National Renewable Energy Laboratory Lire developing technologies to produce hydrogen from renewable, sustainable sources. A cost goal of $2.00-$3.00 kg(-1) of hydrogen has been identified as the range at which delivered hydrogen becomes cost competitive with gasoline for passenger vehicles. Electrolysis of water is a standard commercial technology for producing hydrogen. Using wind and solar resources to produce the electricity for the process creates a renewable system. Biomass-to-hydrogen processes, including gasification, pyrolysis, and fermentation, Lire less well-developed technologies. These processes offer the possibility of producing hydrogen from energy crops and from biornass materials such as forest residue and municipal sewage. Solar energy can be used to produce hydrogen from water and biomass by several conversion pathways. Concentrated solar energy can generate high temperatures at which thermochemical reactions can be used to split water. Photoelectrochemical water splitting and photobiology are long-term options for producing hydrogen from water using solar energy. All these technologies Lire in the development stage. Copyright (C) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:379 / 407
页数:29
相关论文
共 146 条
[1]  
Abanades S, 2006, ENERGY, V31, P2805, DOI 10.1016/j.energy.2005.11.002
[2]  
Amos WA., 2004, UPDATED COST ANAL PH
[3]  
[Anonymous], J IND ECOLOGY
[4]  
[Anonymous], WORLD EN TECHN OUTL
[5]   Biomass gasification in supercritical water [J].
Antal, MJ ;
Allen, SG ;
Schulman, D ;
Xu, XD ;
Divilio, RJ .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2000, 39 (11) :4040-4053
[6]   The dependence of algal H2 production on Photosystem II and O2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells [J].
Antal, TK ;
Krendeleva, TE ;
Laurinavichene, TV ;
Makarova, VV ;
Ghirardi, ML ;
Rubin, AB ;
Tsygankov, AA ;
Seibert, M .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2003, 1607 (2-3) :153-160
[7]   Sequence analysis of an operon of a NAD(P)-reducing nickel hydrogenase from the cyanobacterium Synechocystis sp PCC 6803 gives additional evidence for direct coupling of the enzyme to NAD(P)H-dehydrogenase (complex I) [J].
Appel, J ;
Schulz, R .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 1996, 1298 (02) :141-147
[8]   Heterologous expression of clostridial hydrogenase in the cyanobacterium Synechococcus PCC7942 [J].
Asada, Y ;
Koike, Y ;
Schnackenberg, J ;
Miyake, M ;
Uemura, I ;
Miyake, J .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2000, 1490 (03) :269-278
[9]   Catalyst performance of Rh/CeO2/SiO2 in the pyrogasification of biomass [J].
Asadullah, M ;
Miyazawa, T ;
Ito, S ;
Kunimori, K ;
Tomishige, K .
ENERGY & FUELS, 2003, 17 (04) :842-849
[10]   Combinatorial electrochemical synthesis and characterization of tungsten-based mixed-metal oxides [J].
Baeck, SH ;
Jaramillo, TF ;
Brändli, C ;
McFarland, EW .
JOURNAL OF COMBINATORIAL CHEMISTRY, 2002, 4 (06) :563-568