Adenosine-mediated inhibition of striatal GABAergic synaptic transmission during in vitro ischaemia

被引:36
作者
Centonze, D
Saulle, E
Pisani, A
Bernardi, G
Calabresi, P
机构
[1] Univ Roma Tor Vergata, Dipartimento Neurosci, Neurol Clin, I-00133 Rome, Italy
[2] IRCCS Fdn Santa Lucia, Rome, Italy
关键词
A1 adenosine receptors; ATP-dependent potassium channels; brain slices; electrophysiology; neuroprotection;
D O I
10.1093/brain/124.9.1855
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Several reports have shown that energy deprivation, as a result of hypoxia, hypoglycaemia or ischaemia, depresses excitatory synaptic transmission in virtually all brain areas. How this pathological condition affects inhibitory synaptic transmission is still unclear. In the present in vitro study, we coupled whole-cell patch clamp recordings from striatal neurones with focal stimulation of GABAergic nerve terminals in order to characterize the electrophysiological effects of combined oxygen and glucose deprivation (in vitro ischaemia) on inhibitory postsynaptic currents (IPSCs) in this brain area. We found that brief periods (2-5 min) of in vitro ischaemia invariably caused a marked depression of IPSC amplitude. This inhibitory effect was fully reversible on removal of the ischaemic challenge. It was coupled with an increased paired-pulse facilitation, suggesting the involvement of presynaptic mechanisms. Accordingly, the ischaemic inhibition of striatal GABAergic IPSCs was not caused by a shift in the reversal potential of GABA(A)-receptor mediated synaptic currents, and was independ- ent of postsynaptic ATP concentrations. Endogenous adenosine, acting on A1 receptors, appeared responsible for this presynaptic action as the ischaemic depression of IPSCs was prevented by CPT [8-(4-chlorophenylthio) adenosine] and DPCPX, two adenosine A1 receptor antagonists, and mimicked by the application of adenosine in the bathing solution. Conversely, ATP-sensitive potassium channels were not involved in the inhibition of IPSCs by ischaemia, as demonstrated by the fact that tolbutamide and glipizide, two blockers of these channels, were ineffective in preventing this electrophysiological effect. The early depression of GABA-mediated synaptic transmission might play a role in the development of irreversible neuronal injury in the course of brain ischaemia.
引用
收藏
页码:1855 / 1865
页数:11
相关论文
共 98 条
[1]  
Akasu T, 1996, SYNAPSE, V24, P125, DOI 10.1002/(SICI)1098-2396(199610)24:2<125::AID-SYN4>3.0.CO
[2]  
2-H
[3]   PROPERTIES AND FUNCTIONS OF ATP-SENSITIVE K-CHANNELS [J].
ASHCROFT, SJH ;
ASHCROFT, FM .
CELLULAR SIGNALLING, 1990, 2 (03) :197-214
[4]   Inhibition by adenosine receptor agonists of synaptic transmission in rat periaqueductal grey neurons [J].
Bagley, EE ;
Vaughan, CW ;
Christie, MJ .
JOURNAL OF PHYSIOLOGY-LONDON, 1999, 516 (01) :219-225
[5]   Model of cortical-basal ganglionic processing: Encoding the serial order of sensory events [J].
Beiser, DG ;
Houk, JC .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 79 (06) :3168-3188
[6]   GALANIN AND GLIBENCLAMIDE MODULATE THE ANOXIC RELEASE OF GLUTAMATE IN RAT CA3 HIPPOCAMPAL-NEURONS [J].
BENARI, Y .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1990, 2 (01) :62-68
[7]   SYNAPTIC INPUT AND OUTPUT OF PARVALBUMIN-IMMUNOREACTIVE NEURONS IN THE NEOSTRIATUM OF THE RAT [J].
BENNETT, BD ;
BOLAM, JP .
NEUROSCIENCE, 1994, 62 (03) :707-719
[8]   RELEASE OF ADENOSINE FROM ISCHEMIC BRAIN - EFFECT ON CEREBRAL VASCULAR-RESISTANCE AND INCORPORATION INTO CEREBRAL ADENINE-NUCLEOTIDES [J].
BERNE, RM ;
RUBIO, R ;
CURNISH, RR .
CIRCULATION RESEARCH, 1974, 35 (02) :262-271
[9]   A common mechanism mediates long-term changes in synaptic transmission after chronic cocaine and morphine [J].
Bonci, A ;
Williams, JT .
NEURON, 1996, 16 (03) :631-639
[10]   Striatal spiny neurons and cholinergic interneurons express differential ionotropic glutamatergic responses and vulnerability: Implications for ischemia and Huntington's disease [J].
Calabresi, P ;
Centonze, D ;
Pisani, A ;
Sancesario, G ;
Gubellini, P ;
Marfia, GA ;
Bernardi, G .
ANNALS OF NEUROLOGY, 1998, 43 (05) :586-597