Open Quantum Random Walks

被引:133
作者
Attal, S. [1 ]
Petruccione, F. [2 ,3 ]
Sabot, C. [1 ]
Sinayskiy, I. [2 ,3 ]
机构
[1] Univ Lyon 1, Inst Camille Jordan, CNRS, F-69622 Villeurbanne, France
[2] Univ KwaZulu Natal, Sch Phys, Quantum Res Grp, ZA-4001 Durban, South Africa
[3] Univ KwaZulu Natal, Natl Inst Theoret Phys, ZA-4001 Durban, South Africa
基金
新加坡国家研究基金会;
关键词
Quantum random walks; Open quantum systems; Quantum mechanics; Markov chains; DECOHERENCE;
D O I
10.1007/s10955-012-0491-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new model of quantum random walks is introduced, on lattices as well as on finite graphs. These quantum random walks take into account the behavior of open quantum systems. They are the exact quantum analogues of classical Markov chains. We explore the "quantum trajectory" point of view on these quantum random walks, that is, we show that measuring the position of the particle after each time-step gives rise to a classical Markov chain, on the lattice times the state space of the particle. This quantum trajectory is a simulation of the master equation of the quantum random walk. The physical pertinence of such quantum random walks and the way they can be concretely realized is discussed. Differences and connections with the already well-known quantum random walks, such as the Hadamard random walk, are established.
引用
收藏
页码:832 / 852
页数:21
相关论文
共 48 条
[1]  
Aharonov D., 2001, P 33 ANN ACM S THEOR, DOI [10.1145/380752.380758, DOI 10.1145/380752.380758]
[2]   QUANTUM RANDOM-WALKS [J].
AHARONOV, Y ;
DAVIDOVICH, L ;
ZAGURY, N .
PHYSICAL REVIEW A, 1993, 48 (02) :1687-1690
[3]   Asymptotic evolution of quantum walks with random coin [J].
Ahlbrecht, A. ;
Vogts, H. ;
Werner, A. H. ;
Werner, R. F. .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (04)
[4]  
Alicki R., 1987, Lecture Notes in Physics
[5]  
Ambainis A, 2008, LECT NOTES COMPUT SC, V4910, P1
[6]  
[Anonymous], 1983, STATES EFFECTS OPERA
[7]   From repeated to continuous quantum interactions [J].
Attal, S ;
Pautrat, Y .
ANNALES HENRI POINCARE, 2006, 7 (01) :59-104
[8]  
Attal S., CENTRAL LIMIT THEORE
[9]  
Barber M.N., 1970, Random and Restricted Walks
[10]  
Berg H. C., 1993, Random Walks in Biology