We have isolated, characterized, and examined the expression of the genes encoding BiP endoplasmic reticulum (ER) resident chaperonins responsible for transport, maturation, and proper folding of membrane and secreted proteins from tw divergent strains of Pneumocystis carinii. The BiP genes, Pcbip and Prbip, from the P. c. carinii (prototype) strain and the P. c. rattus (variant) strain, respectively, are single-copy genes that reside on chromosomes of similar to 330 and similar to 350 kbp. Both genes encode similar to 72.5-kDa proteins that are most homologous to BiP genes from other organisms and exhibit the amino-terminal signal peptides and carboxyl-terminal ER retention sequences that are hallmarks of BiP proteins. We established short-term P. carinii cultures to examine expression and induction of Pcbip in response to heat shock, glucose starvation, inhibition of protein transport or N-linked glycosylation, and other conditions known to affect proper transport, glycosylation, and maturation of membrane and secreted proteins. These studies indicated that Pcbip mRNA is constitutively expressed but induced under conditions known to induce BiP expression in other organisms. In contrast to mammalian BiP genes but like other fungal BiP genes, P. carinii BiP mRNA levels are induced by heat shock Finally, the Prbip and Pcbip coding sequences surprisingly exhibit only similar to 83% DNA and similar to 90% amino acid sequence identity and show only Limited conservation in noncoding banking and intron sequences. Analyses of the P. carinii BiP gene sequences support inclusion of P. carinii among the fungi but suggest a large divergence and possible speciation among P. carinii strains infecting a given host.