Identification of cis regulatory features in the embryonic zebrafish genome through large-scale profiling of H3K4me1 and H3K4me3 binding sites

被引:67
作者
Aday, Aaron W. [1 ]
Zhu, Lihua Julie [1 ]
Lakshmanan, Abirami [1 ]
Wang, Jie [2 ]
Lawson, Nathan D. [1 ]
机构
[1] Univ Massachusetts, Sch Med, Program Gene Funct & Express, Worcester, MA 01602 USA
[2] Univ Massachusetts, Sch Med, Program Bioinformat & Integrat Biol, Worcester, MA 01602 USA
关键词
Zebrafish; Histone modification; ChIP-Seq; Enhancer; GENE-EXPRESSION; DEVELOPMENTAL REGULATORS; HISTONE MODIFICATIONS; CHROMATIN SIGNATURES; CHIP-SEQ; TRANSCRIPTION; ENHANCER; PLURIPOTENT; METHYLATION; SUPPRESSOR;
D O I
10.1016/j.ydbio.2011.03.007
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
An organism's genome sequence serves as a blueprint for the proteins and regulatory RNAs essential for cellular function. The genome also harbors cis-acting non-coding sequences that control gene expression and are essential to coordinate regulatory programs during embryonic development. However, the genome sequence is largely identical between cell types within a multi-cellular organism indicating that factors such as DNA accessibility and chromatin structure play a crucial role in governing cell-specific gene expression. Recent studies have identified particular chromatin modifications that define functionally distinct cis regulatory elements. Among these are forms of histone 3 that are mono- or tri-methylated at lysine 4 (H3K4me1 or H3K4me3, respectively), which bind preferentially to promoter and enhancer elements in the mammalian genome. In this work, we investigated whether these modified histones could similarly identify cis regulatory elements within the zebrafish genome. By applying chromatin immunoprecipitation followed by deep sequencing, we find that H3K4me1 and H3K4me3 are enriched at transcriptional start sites in the genome of the developing zebrafish embryo and that this association correlates with gene expression. We further find that these modifications associate with distal non-coding conserved elements, including known active enhancers. Finally, we demonstrate that it is possible to utilize H3K4me1 and H3K4me3 binding profiles in combination with available expression data to computationally identify relevant cis regulatory sequences flanking syn-expressed genes in the developing embryo. Taken together, our results indicate that H3K4me1 and H3K4me3 generally mark cis regulatory elements within the zebrafish genome and indicate that further characterization of the zebrafish using this approach will prove valuable in defining transcriptional networks in this model system. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:450 / 462
页数:13
相关论文
共 66 条
[1]   A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos [J].
Akkers, Robert C. ;
van Heeringen, Simon J. ;
Jacobi, Ulrike G. ;
Janssen-Megens, Eva M. ;
Francoijs, Kees-Jan ;
Stunnenberg, Hendrik G. ;
Veenstra, Gert Jan C. .
DEVELOPMENTAL CELL, 2009, 17 (03) :425-434
[2]   Notch signaling: Cell fate control and signal integration in development [J].
Artavanis-Tsakonas, S ;
Rand, MD ;
Lake, RJ .
SCIENCE, 1999, 284 (5415) :770-776
[3]   Chromatin signatures of pluripotent cell lines [J].
Azuara, V ;
Perry, P ;
Sauer, S ;
Spivakov, M ;
Jorgensen, HF ;
John, RM ;
Gouti, M ;
Casanova, M ;
Warnes, G ;
Merkenschlager, M ;
Fisher, AG .
NATURE CELL BIOLOGY, 2006, 8 (05) :532-U189
[4]   SUPPRESSOR OF HAIRLESS DIRECTLY ACTIVATES TRANSCRIPTION OF ENHANCER OF SPLIT COMPLEX GENES IN RESPONSE TO NOTCH RECEPTOR ACTIVITY [J].
BAILEY, AM ;
POSAKONY, JW .
GENES & DEVELOPMENT, 1995, 9 (21) :2609-2622
[5]   MEME: discovering and analyzing DNA and protein sequence motifs [J].
Bailey, Timothy L. ;
Williams, Nadya ;
Misleh, Chris ;
Li, Wilfred W. .
NUCLEIC ACIDS RESEARCH, 2006, 34 :W369-W373
[6]   High-resolution profiling of histone methylations in the human genome [J].
Barski, Artern ;
Cuddapah, Suresh ;
Cui, Kairong ;
Roh, Tae-Young ;
Schones, Dustin E. ;
Wang, Zhibin ;
Wei, Gang ;
Chepelev, Iouri ;
Zhao, Keji .
CELL, 2007, 129 (04) :823-837
[7]   The protein CTCF is required for the enhancer blocking activity of vertebrate insulators [J].
Bell, AC ;
West, AG ;
Felsenfeld, G .
CELL, 1999, 98 (03) :387-396
[8]   A bivalent chromatin structure marks key developmental genes in embryonic stem cells [J].
Bernstein, BE ;
Mikkelsen, TS ;
Xie, XH ;
Kamal, M ;
Huebert, DJ ;
Cuff, J ;
Fry, B ;
Meissner, A ;
Wernig, M ;
Plath, K ;
Jaenisch, R ;
Wagschal, A ;
Feil, R ;
Schreiber, SL ;
Lander, ES .
CELL, 2006, 125 (02) :315-326
[9]   Genomic maps and comparative analysis of histone modifications in human and mouse [J].
Bernstein, BE ;
Kamal, M ;
Lindblad-Toh, K ;
Bekiranov, S ;
Bailey, DK ;
Huebert, DJ ;
McMahon, S ;
Karlsson, EK ;
Kulbokas, EJ ;
Gingeras, TR ;
Schreiber, SL ;
Lander, ES .
CELL, 2005, 120 (02) :169-181
[10]   Methylation of histone H3 Lys 4 in coding regions of active genes [J].
Bernstein, BE ;
Humphrey, EL ;
Erlich, RL ;
Schneider, R ;
Bouman, P ;
Liu, JS ;
Kouzarides, T ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (13) :8695-8700