One-pot hydrothermal synthesis of ruthenium oxide nanodots on reduced graphene oxide sheets for supercapacitors

被引:64
作者
Chen, Yao [1 ,2 ]
Zhang, Xiong [1 ]
Zhang, Dacheng [1 ,2 ]
Ma, Yanwei [1 ]
机构
[1] Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy storage materials; Chemical synthesis; Transmission electron microscopy; CHEMICAL-SYNTHESIS; HIGH-PERFORMANCE; HYDROUS RUO2; ARCHITECTURE; ELECTRODES; SIZE;
D O I
10.1016/j.jallcom.2011.09.045
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ruthenium oxide nanodots have been deposited on reduced graphene oxide (RGO) sheets homogeneously by hydrothermal and annealing methods. Adding NaOH solution in GO colloids prevents the restack and agglomeration of GO sheets when mixed with ruthenium chloride solution. Local crystallization of RuO2 in the composites is revealed by X-ray diffraction and transmission electron microscopy. The element mapping image demonstrates the uniform distribution of Ru on RGO sheets. Unlike the pure crystalline RuO2 exhibiting poor electrochemical performance, the composites present superior capacitive properties. The hydrothermal time is optimized and a maximum of 471 Fg(-1) is measured in the composites at 0.5 Ag-1 when loaded with 45 wt% of RuO2. After 3000 cycles, its specific capacitance remains 92% of the maximum capacitance. Our results suggest potential application of the reduced graphene oxide/ruthenium oxide composites to supercapacitors. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:251 / 256
页数:6
相关论文
共 36 条
[1]   Highly Dispersed RuO2 Nanoparticles on Carbon Nanotubes: Facile Synthesis and Enhanced Supercapacitance Performance [J].
Bi, Rong-Rong ;
Wu, Xing-Long ;
Cao, Fei-Fei ;
Jiang, Ling-Yan ;
Guo, Yu-Guo ;
Wan, Li-Jun .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (06) :2448-2451
[2]   An overview of graphene in energy production and storage applications [J].
Brownson, Dale A. C. ;
Kampouris, Dimitrios K. ;
Banks, Craig E. .
JOURNAL OF POWER SOURCES, 2011, 196 (11) :4873-4885
[3]   Textural and capacitive characteristics of hydrothermally derived RuO2•xH2O nanocrystallites:: Independent control of crystal size and water content [J].
Chang, Kuo-Hsin ;
Hu, Chi-Chang ;
Chou, Chih-Yin .
CHEMISTRY OF MATERIALS, 2007, 19 (08) :2112-2119
[4]   A unique strategy for preparing single-phase unitary/binary oxides-graphene composites [J].
Chang, Kuo-Hsin ;
Lee, Ying-Feng ;
Hu, Chi-Chang ;
Chang, Chih-I ;
Liu, Chien-Liang ;
Yang, Yi-Lin .
CHEMICAL COMMUNICATIONS, 2010, 46 (42) :7957-7959
[5]   Textural and pseudocapacitive characteristics of sol-gel derived RuO2•xH2O: Hydrothermal annealing vs. annealing in air [J].
Chang, Kuo-Hsin ;
Hu, Chi-Chang ;
Chou, Chih-Yin .
ELECTROCHIMICA ACTA, 2009, 54 (03) :978-983
[6]   Coalescence inhibition of hydrous RuO2 crystallites prepared by a hydrothermal method [J].
Chang, Kuo-Hsin ;
Hu, Chi-Chang .
APPLIED PHYSICS LETTERS, 2006, 88 (19)
[7]  
Chen Y., 2009, CHEM COMMUN, V452, P7
[8]   High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes [J].
Chen, Yao ;
Zhang, Xiong ;
Zhang, Dacheng ;
Yu, Peng ;
Ma, Yanwei .
CARBON, 2011, 49 (02) :573-580
[9]   Electrophoretic deposition of graphene nanosheets on nickel foams for electrochemical capacitors [J].
Chen, Yao ;
Zhang, Xiong ;
Yu, Peng ;
Ma, Yanwei .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :3031-3035
[10]   Two step novel chemical synthesis of polypyrrole nanoplates for supercapacitor application [J].
Dubal, D. P. ;
Patil, S. V. ;
Jagadale, A. D. ;
Lokhande, C. D. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (32) :8183-8188