Free-energy conservation in local gyrofluid models

被引:109
作者
Scott, BD [1 ]
机构
[1] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany
关键词
D O I
10.1063/1.2064968
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The details of fluctuation free-energy conservation in gyrofluid models are examined. The polarization equation relates ExB flow and eddy energy to combinations of the potential and the density and perpendicular temperature. These determine the combinations which must appear under derivatives in the moment equations so that not only thermal free energy but also its combination with the ExB energy is properly conserved by the parallel and perpendicular compressional effects. The resulting system exhibits the same qualitative energy-transfer properties as corresponding Braginskii or Landau fluid models. One clear result is that the numerical model built on these equations is well behaved for arbitrarily large perpendicular wave number, allowing exploration of two scale phenomena linking dynamics at the ion and electron gyroradii. When the numerical formulation is done in the globally consistent flux tube model, the results with adiabatic electrons are consistent with the "Cyclone base case" results of gyrokinetic models.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 45 条
[1]   ALMOST 2-DIMENSIONAL TREATMENT OF DRIFT WAVE TURBULENCE [J].
ALBERT, JM ;
SIMILON, PL ;
SUDAN, RN .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (12) :3032-3039
[3]   FIELD-ALIGNED COORDINATES FOR NONLINEAR SIMULATIONS OF TOKAMAK TURBULENCE [J].
BEER, MA ;
COWLEY, SC ;
HAMMETT, GW .
PHYSICS OF PLASMAS, 1995, 2 (07) :2687-2700
[4]   Toroidal gyrofluid equations for simulations of tokamak turbulence [J].
Beer, MA ;
Hammett, GW .
PHYSICS OF PLASMAS, 1996, 3 (11) :4046-4064
[5]   Nonlinear gyroviscous force in a collisionless plasma [J].
Belova, EV .
PHYSICS OF PLASMAS, 2001, 8 (09) :3936-3944
[6]  
Braginskii S. I., 1965, REV PLASMA PHYS, V1, P205, DOI DOI 10.1088/0741-3335/47/10/005
[7]   The influence of magnetic fluctuations on collisional drift-wave turbulence [J].
Camargo, SJ ;
Scott, BD ;
Biskamp, D .
PHYSICS OF PLASMAS, 1996, 3 (11) :3912-3931
[8]   MULTIDIMENSIONAL UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS [J].
COLELLA, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 87 (01) :171-200
[9]   Vlasov simulation of kinetic shear Alfven waves [J].
Dannert, T ;
Jenko, F .
COMPUTER PHYSICS COMMUNICATIONS, 2004, 163 (02) :67-78
[10]   Comparisons and physics basis of tokamak transport models and turbulence simulations [J].
Dimits, AM ;
Bateman, G ;
Beer, MA ;
Cohen, BI ;
Dorland, W ;
Hammett, GW ;
Kim, C ;
Kinsey, JE ;
Kotschenreuther, M ;
Kritz, AH ;
Lao, LL ;
Mandrekas, J ;
Nevins, WM ;
Parker, SE ;
Redd, AJ ;
Shumaker, DE ;
Sydora, R ;
Weiland, J .
PHYSICS OF PLASMAS, 2000, 7 (03) :969-983