Ordered surfactant-templated poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer on microfabricated neural probes

被引:113
作者
Yang, JY
Kim, DH
Hendricks, JL
Leach, M
Northey, R
Martin, DC
机构
[1] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Macromol Sci, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Ctr Engn, Ann Arbor, MI 48109 USA
关键词
conducting polymer; PEDOT; surfactant; microfabricated neural probes; cell adhesion;
D O I
10.1016/j.actbio.2004.09.006
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Ordered conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) was electrochemically fabricated using a self-assembled medium of surfactant molecules as a template. The morphology and microstructure were extensively investigated by optical and electron microscopy, and results show that the coated films were composed of anisotropic domains having a characteristic size of 15-150 nm. The surfactant-templated ordered PEDOT films were electrochemically deposited on microfabricated neural probes with an electrode site area of 1256 mu m(2). The electrical properties were studied by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). EIS showed a lowered magnitude of 35 k Omega (from an initial similar to 800 k Omega) at the biologically relevant frequency of 1 kHz. CV results show that the film has higher charge capacity and is more electrochemically stable than either nodular PEDOT or PPy. Furthermore, we have begun to probe the biological response to such a material intended to define the tissue-material interface. Results show that minute concentrations of the non-ionic surfactant are enough to kill all nearby cells in culture. It is possible however, to create surfactant-templated ordered PEDOT such that SH-SY5Y survive on the conductive polymer. (c) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:125 / 136
页数:12
相关论文
共 41 条
[1]   n- and p-doped poly(3,4-ethylenedioxythiophene): Two electronically conducting states of the polymer [J].
Ahonen, HJ ;
Lukkari, J ;
Kankare, J .
MACROMOLECULES, 2000, 33 (18) :6787-6793
[2]   General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films [J].
Alberius, PCA ;
Frindell, KL ;
Hayward, RC ;
Kramer, EJ ;
Stucky, GD ;
Chmelka, BF .
CHEMISTRY OF MATERIALS, 2002, 14 (08) :3284-3294
[3]  
Bar-cohen Y., 2001, ELECTROACTIVE POLYM
[4]   Conducting polymer artificial muscles [J].
Baughman, RH .
SYNTHETIC METALS, 1996, 78 (03) :339-353
[5]   Adsorbed surfactants as templates for the synthesis of morphologically controlled polyaniline and polypyrrole nanostructures on flat surfaces: From spheres to wires to flat films [J].
Carswell, ADW ;
O'Rear, EA ;
Grady, BP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (48) :14793-14800
[6]   Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays [J].
Cui, XY ;
Martin, DC .
SENSORS AND ACTUATORS B-CHEMICAL, 2003, 89 (1-2) :92-102
[7]  
Cui XY, 2001, J BIOMED MATER RES, V56, P261, DOI 10.1002/1097-4636(200108)56:2<261::AID-JBM1094>3.0.CO
[8]  
2-I
[9]   In vivo studies of polypyrrole/peptide coated neural probes [J].
Cui, XY ;
Wiler, J ;
Dzaman, M ;
Altschuler, RA ;
Martin, DC .
BIOMATERIALS, 2003, 24 (05) :777-787
[10]   Electrochemical deposition and characterization of conducting polymer polypyrrole/PSS on multichannel neural probes [J].
Cui, XY ;
Hetke, JF ;
Wiler, JA ;
Anderson, DJ ;
Martin, DC .
SENSORS AND ACTUATORS A-PHYSICAL, 2001, 93 (01) :8-18