Growth mechanism of vapor phase CVD-grown multi-walled carbon nanotubes

被引:101
作者
Deck, CP [1 ]
Vecchio, K [1 ]
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, Mat Sci & Engn Grp, La Jolla, CA 92093 USA
关键词
carbon nanotubes; chemical vapor deposition; pyrolysis; transmission electron microscopy; microstructure;
D O I
10.1016/j.carbon.2005.05.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The formation mechanisms involved in the growth of carbon nanotubes (CNTs) by spray pyrolysis was studied. Both iron and nickel were used as catalysts for growth, and nanotubes were also produced using thermal chemical vapor deposition for comparison. Transmission electron microscopy was used to analyze the encapsulated metal catalyst particles found within the tubes, and the dimensions and location of these particles was recorded. CNTs grown by spray pyrolysis were found to have encapsulated particles in both the middle and end of tubes, with large length to diameter ratios. As a result of these observations, it is concluded that nanotubes grown using spray pyrolysis are formed via an open-ended, root growth mechanism. Additionally, the presence of multiple, high aspect ratio particles within single tubes is explained by an additional growth theory. During the continued growth of these CNTs, metal atoms or nanoscale metal catalyst particles deposit in the open ends of growing tubes, forming new particles and helping to prevent tube closure. CNTs grown with thermal CVD did not contain similar elongated particles or particles along the middle of the tubes, indicating that this new growth mechanism is only applicable in the case of tubes grown via spray pyrolysis or other vapor phase CVD growth methods. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2608 / 2617
页数:10
相关论文
共 34 条
[1]   Nanotube composite carbon fibers [J].
Andrews, R ;
Jacques, D ;
Rao, AM ;
Rantell, T ;
Derbyshire, F ;
Chen, Y ;
Chen, J ;
Haddon, RC .
APPLIED PHYSICS LETTERS, 1999, 75 (09) :1329-1331
[2]  
Baker R.T.K., 1978, CHEM PHYS CARBON, V14, P83
[3]   CATALYTIC GROWTH OF CARBON FILAMENTS [J].
BAKER, RTK .
CARBON, 1989, 27 (03) :315-323
[4]   NUCLEATION AND GROWTH OF CARBON DEPOSITS FROM NICKEL CATALYZED DECOMPOSITION OF ACETYLENE [J].
BAKER, RTK ;
BARBER, MA ;
WAITE, RJ ;
HARRIS, PS ;
FEATES, FS .
JOURNAL OF CATALYSIS, 1972, 26 (01) :51-&
[5]   Theory of growth and mechanical properties of nanotubes [J].
Bernholc, J ;
Brabec, C ;
Nardelli, MB ;
Maiti, A ;
Roland, C ;
Yakobson, BI .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 67 (01) :39-46
[6]   Hydrogen storage in carbon nanotubes [J].
Cheng, HM ;
Yang, QH ;
Liu, C .
CARBON, 2001, 39 (10) :1447-1454
[7]   A CARBON NANOTUBE FIELD-EMISSION ELECTRON SOURCE [J].
DEHEER, WA ;
CHATELAIN, A ;
UGARTE, D .
SCIENCE, 1995, 270 (5239) :1179-1180
[8]   Carbon nanotube inter- and intramolecular logic gates [J].
Derycke, V ;
Martel, R ;
Appenzeller, J ;
Avouris, P .
NANO LETTERS, 2001, 1 (09) :453-456
[9]   PHYSICS OF CARBON NANOTUBES [J].
DRESSELHAUS, MS ;
DRESSELHAUS, G ;
SAITO, R .
CARBON, 1995, 33 (07) :883-891
[10]   THE PRODUCTION AND STRUCTURE OF PYROLYTIC CARBON NANOTUBES (PCNTS) [J].
ENDO, M ;
TAKEUCHI, K ;
IGARASHI, S ;
KOBORI, K ;
SHIRAISHI, M ;
KROTO, HW .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1993, 54 (12) :1841-1848