Cellulose biosynthesis and deposition in higher plants

被引:183
作者
Taylor, Neil G. [1 ]
机构
[1] Univ York, Dept Biol, Ctr Novel Agr Prod, York YO10 5DD, N Yorkshire, England
关键词
cell wall; cellulose; cellulose synthase; microtubule; plant development;
D O I
10.1111/j.1469-8137.2008.02385.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The plant cell wall is central to plant development. Cellulose is a major component of plant cell walls, and is the world's most abundant biopolymer. Cellulose contains apparently simple linear chains of glucose residues, but these chains aggregate to form immensely strong microfibrils. It is the physical properties of these microfibrils that, when laid down in an organized manner, are responsible for both oriented cell elongation during plant growth and the strength required to maintain an upright growth habit. Despite the importance of cellulose, only recently have we started to unravel details of its synthesis. Mutational analysis has allowed us to identify some of the proteins involved in its synthesis at the plasma membrane, and to define a set of cellulose synthase enzymes essential for cellulose synthesis. These proteins are organized into a very large plasma membrane-localized protein complex. The way in which this protein complex is regulated and directed is central in depositing cellulose microfibrils in the wall in the correct orientation, which is essential for directional cell growth. Recent developments have given us clues as to how cellulose synthesis and deposition is regulated, an understanding of which is essential if we are to manipulate cell wall composition. (C) The Author ( 2008). Journal compilation (C) New Phytologist (2008).
引用
收藏
页码:239 / 252
页数:14
相关论文
共 110 条
[1]   Development of the vascular system in the inflorescence stem of Arabidopsis [J].
Altamura, MM ;
Possenti, M ;
Matteucci, A ;
Baima, S ;
Ruberti, I ;
Morelli, G .
NEW PHYTOLOGIST, 2001, 151 (02) :381-389
[2]  
[Anonymous], GENOME BIOL
[3]   Cellulose synthesis in maize:: isolation and expression analysis of the cellulose synthase (CesA) gene family [J].
Appenzeller, L ;
Doblin, M ;
Barreiro, R ;
Wang, HY ;
Niu, XM ;
Kollipara, K ;
Carrigan, L ;
Tomes, D ;
Chapman, M ;
Dhugga, KS .
CELLULOSE, 2004, 11 (3-4) :287-299
[4]   Molecular analysis of cellulose biosynthesis in Arabidopsis [J].
Arioli, T ;
Peng, LC ;
Betzner, AS ;
Burn, J ;
Wittke, W ;
Herth, W ;
Camilleri, C ;
Höfte, H ;
Plazinski, J ;
Birch, R ;
Cork, A ;
Glover, J ;
Redmond, J ;
Williamson, RE .
SCIENCE, 1998, 279 (5351) :717-720
[5]   Disorganization of cortical microtubules stimulates tangential expansion and reduces the uniformity of cellulose microfibril alignment among cells in the root of Arabidopsis [J].
Baskin, TI ;
Beemster, GTS ;
Judy-March, JE ;
Marga, F .
PLANT PHYSIOLOGY, 2004, 135 (04) :2279-2290
[6]   On the alignment of cellulose microfibrils by cortical microtubules: a review and a model [J].
Baskin, TI .
PROTOPLASMA, 2001, 215 (1-4) :150-171
[7]   Genetic complexity of cellulose synthase A gene function in Arabidopsis embryogenesis [J].
Beeckman, T ;
Przemeck, GKH ;
Stamatiou, G ;
Lau, R ;
Terryn, N ;
De Rycke, R ;
Inzé, D ;
Berleth, T .
PLANT PHYSIOLOGY, 2002, 130 (04) :1883-1893
[8]   β-subunit assembly is essential for the correct packing and the stable membrane insertion of the H,K-ATPase α-subunit [J].
Beggah, AT ;
Béguin, P ;
Bamberg, K ;
Sachs, G ;
Geering, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (12) :8217-8223
[9]   Arabidopsis glucosidase I mutants reveal a critical role of N-glycan trimming in seed development [J].
Boisson, M ;
Gomord, V ;
Audran, C ;
Berger, N ;
Dubreucq, B ;
Granier, F ;
Lerouge, P ;
Faye, L ;
Caboche, M ;
Lepiniec, L .
EMBO JOURNAL, 2001, 20 (05) :1010-1019
[10]   Interactions between MUR10/CesA7-dependent secondary cellulose biosynthesis and primary cell wall structure [J].
Bosca, Sonia ;
Barton, Christopher J. ;
Taylor, Neil G. ;
Ryden, Peter ;
Neumetzler, Lutz ;
Pauly, Markus ;
Roberts, Keith ;
Seifert, Georg J. .
PLANT PHYSIOLOGY, 2006, 142 (04) :1353-1363