Metabolic acidosis stimulates RANKL RNA expression in bone through a cyclo-oxygenase-dependent mechanism

被引:81
作者
Frick, KK [1 ]
Bushinsky, DA [1 ]
机构
[1] Univ Rochester, Sch Med & Dent, Dept Med, Nephrol Unit, Rochester, NY 14642 USA
关键词
RANKL; acidosis; osteoclast; calcium; bone; prostaglandins;
D O I
10.1359/jbmr.2003.18.7.1317
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Metabolic acidosis inhibits osteoblastic bone formation and stimulates osteoclastic resorption. To determine whether acidosis alters expression of RNA for the osteoclastic differentiation factor RANKL, mouse calvariae were incubated in neutral or physiologically acidic media. Acidosis resulted in a significant cyclo-oxygenase-dependent increase in RANKL RNA levels, which would be expected to induce the associated increase in bone resorption. Introduction: Metabolic acidosis increases net calcium efflux from bone, initially through physicochemical mechanisms and later through predominantly cell-mediated mechanisms. Acidosis decreases osteoblastic bone formation and increases osteoclastic resorption. The growth and maturation of osteoclasts, derived from hematopoietic precursors in the monocyte/macrophage lineage, are dependent on the interplay of a number of factors. Commitment of pre-osteoclasts to osteoclasts is induced by the interaction of the osteoclastic cell-surface receptor RANK with a ligand expressed by osteoblasts, RANKL. The RANK/RANKL interaction not only initiates a differentiation cascade that culminates in mature bone-resorbing osteoclasts but also increases osteoclastic resorptive capacity and survival. Methods: To test the hypothesis that metabolic acidosis increases expression of RANKL, we cultured neonatal mouse calvariae in acidic (initial medium pH similar to7.1 and [HCO3-] similar to11 mM) or neutral (initial medium pH similar to7.5 and [HCO3-] similar to25 mM) medium for 24 and 48 It. We determined the relative expression of RANKL RNA by reverse transcriptase-polymerase chain reaction (RT-PCR) and quantitated the expression by Northern analysis. Results: In this model of metabolic acidosis, there was significantly increased expression of RANKL RNA at both 24 (2-fold) and 48 h (5-fold) compared with respective controls. Net calcium efflux from bone was also increased in acidic medium compared with control medium. At 48 h, net calcium efflux correlated directly with RANKL expression (r = 0.77, n = 15, p < 0.001). Inhibition of prostaglandin synthesis with indomethacin blocked the acid-induced increase in RANKL RNA as well as the increased calcium efflux. Conclusions: Metabolic acidosis induces osteoblastic prostaglandin synthesis, followed by autocrine or paracrine induction of RANKL. This increase in RANKL would be expected to augment osteoclastic bone resorption and help explain the increase in cell-mediated net calcium efflux.
引用
收藏
页码:1317 / 1325
页数:9
相关论文
共 65 条
[51]   Cell adhesion is a prerequisite for osteoclast survival [J].
Sakai, H ;
Kobayashi, Y ;
Sakai, E ;
Shibata, M ;
Kato, Y .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2000, 270 (02) :550-556
[52]   Fibroblasts from the inner granulation tissue of the pseudocapsule in hips at revision arthroplasty induce osteoclast differentiation, as do stromal cells [J].
Sakai, H ;
Jingushi, S ;
Shuto, T ;
Urabe, K ;
Ikenoue, T ;
Okazaki, K ;
Kukita, T ;
Kukita, A ;
Iwamoto, Y .
ANNALS OF THE RHEUMATIC DISEASES, 2002, 61 (02) :103-109
[53]   IMPROVED MINERAL BALANCE AND SKELETAL METABOLISM IN POSTMENOPAUSAL WOMEN TREATED WITH POTASSIUM BICARBONATE [J].
SEBASTIAN, A ;
HARRIS, ST ;
OTTAWAY, JH ;
TODD, KM ;
MORRIS, RC .
NEW ENGLAND JOURNAL OF MEDICINE, 1994, 330 (25) :1776-1781
[54]   Regulation of interleukin-8 expression by cellular pH in human pancreatic adenocarcinoma cells [J].
Shi, Q ;
Le, XD ;
Wang, BL ;
Xiong, QH ;
Abbruzzese, JL ;
Xie, KP .
JOURNAL OF INTERFERON AND CYTOKINE RESEARCH, 2000, 20 (11) :1023-1028
[55]   HUMAN TRANSFORMING GROWTH FACTOR-ALPHA STIMULATES BONE-RESORPTION INVITRO [J].
STERN, PH ;
KRIEGER, NS ;
NISSENSON, RA ;
WILLIAMS, RD ;
WINKLER, ME ;
DERYNCK, R ;
STREWLER, GJ .
JOURNAL OF CLINICAL INVESTIGATION, 1985, 76 (05) :2016-2019
[56]   Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families [J].
Suda, T ;
Takahashi, N ;
Udagawa, N ;
Jimi, E ;
Gillespie, MT ;
Martin, TJ .
ENDOCRINE REVIEWS, 1999, 20 (03) :345-357
[57]   The role of prostaglandin E receptor subtypes (EP1, EP2, EP3, and EP4) in bone resorption: An analysis using specific agonists for the respective EPs [J].
Suzawa, T ;
Miyaura, C ;
Inada, M ;
Maruyama, T ;
Sugimoto, Y ;
Ushikubi, F ;
Ichikawa, A ;
Narumiya, S ;
Suda, T .
ENDOCRINOLOGY, 2000, 141 (04) :1554-1559
[58]   EVIDENCE THAT BONE RESORPTION-STIMULATING FACTOR PRODUCED BY MOUSE FIBROSARCOMA CELLS IS PROSTAGLANDIN E2 - NEW MODEL FOR HYPERCALCEMIA OF CANCER [J].
TASHJIAN, AH ;
VOELKEL, EF ;
LEVINE, L ;
GOLDHABER, P .
JOURNAL OF EXPERIMENTAL MEDICINE, 1972, 136 (06) :1329-+
[59]   EPIDERMAL GROWTH-FACTOR STIMULATES PROSTAGLANDIN PRODUCTION AND BONE-RESORPTION IN CULTURED MOUSE CALVARIA [J].
TASHJIAN, AH ;
LEVINE, L .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1978, 85 (03) :966-975
[60]   PLATELET-DERIVED GROWTH-FACTOR STIMULATES BONE-RESORPTION VIA A PROSTAGLANDIN-MEDIATED MECHANISM [J].
TASHJIAN, AH ;
HOHMANN, EL ;
ANTONIADES, HN ;
LEVINE, L .
ENDOCRINOLOGY, 1982, 111 (01) :118-124