Compressed Sensing Reconstruction for Magnetic Resonance Parameter Mapping

被引:278
作者
Doneva, Mariya [1 ]
Boernert, Peter [2 ]
Eggers, Holger [2 ]
Stehning, Christian [2 ]
Senegas, Julien [2 ]
Mertins, Alfred [1 ]
机构
[1] Univ Lubeck, Inst Signal Proc, D-23538 Lubeck, Germany
[2] Philips Res Europe Hamburg Tomog Imaging Dept, Hamburg, Germany
关键词
MRI; image reconstruction; compressed sensing; T-1; mapping; T-2; SIGNAL RECOVERY; RELAXATION;
D O I
10.1002/mrm.22483
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Compressed sensing (CS) holds considerable promise to accelerate the data acquisition in magnetic resonance imaging by exploiting signal sparsity. Prior knowledge about the signal can be exploited in some applications to choose an appropriate sparsifying transform. This work presents a CS reconstruction for magnetic resonance (MR) parameter mapping, which applies an overcomplete dictionary, learned from the data model to sparsify the signal. The approach is presented and evaluated in simulations and in in vivo T-1 and T-2 mapping experiments in the brain. Accurate T-1 and T-2 maps are obtained from highly reduced data. This model-based reconstruction could also be applied to other MR parameter mapping applications like diffusion and perfusion imaging. Magn Reson Med 64:1114-1120, 2010. (C) 2010 Wiley-Liss, Inc.
引用
收藏
页码:1114 / 1120
页数:7
相关论文
共 20 条
  • [1] K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    Aharon, Michal
    Elad, Michael
    Bruckstein, Alfred
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) : 4311 - 4322
  • [2] A REVIEW OF H-1 NUCLEAR-MAGNETIC-RESONANCE RELAXATION IN PATHOLOGY - ARE T1 AND T2 DIAGNOSTIC
    BOTTOMLEY, PA
    HARDY, CJ
    ARGERSINGER, RE
    ALLENMOORE, G
    [J]. MEDICAL PHYSICS, 1987, 14 (01) : 1 - 37
  • [3] Near-optimal signal recovery from random projections: Universal encoding strategies?
    Candes, Emmanuel J.
    Tao, Terence
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) : 5406 - 5425
  • [4] Exact reconstruction of sparse signals via nonconvex minimization
    Chartrand, Rick
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2007, 14 (10) : 707 - 710
  • [5] Atomic decomposition by basis pursuit
    Chen, SSB
    Donoho, DL
    Saunders, MA
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) : 33 - 61
  • [6] A COMPARISON OF ONE-SHOT AND RECOVERY METHODS IN T1-IMAGING
    CRAWLEY, AP
    HENKELMAN, RM
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1988, 7 (01) : 23 - 34
  • [7] Compressed sensing
    Donoho, DL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) : 1289 - 1306
  • [8] DONOVA M, 2009, P INT SOC MAGN RES M, V17, P2812
  • [9] Compressed sensing in dynamic MRI
    Gamper, Urs
    Boesiger, Peter
    Kozerke, Sebastian
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2008, 59 (02) : 365 - 373
  • [10] k-t FOCUSS: A General Compressed Sensing Framework for High Resolution Dynamic MRI
    Jung, Hong
    Sung, Kyunghyun
    Nayak, Krishna S.
    Kim, Eung Yeop
    Ye, Jong Chul
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2009, 61 (01) : 103 - 116