Hydrogen storage in carbon nanotubes: Residual metal content and pretreatment temperature

被引:79
作者
Lueking, A [1 ]
Yang, RT [1 ]
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
关键词
D O I
10.1002/aic.690490619
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Hydrogen storage in MWNT was enhanced via the catalytic activity of NiMgO. The magnitude of the hydrogen to metal ratio for the MWNT/NiMgO system, combined with temperature programmed adsorption and desorption studies, showed hydrogen spillover from the catalyst to the carbon surface. Metal doping combined with temperature activation studies showed that both nickel and magnesium are active in the catalytic process. The yield, quality, and carbon-metal contact were shown to affect hydrogen uptake. Higher pretreatment temperatures enhanced uptake, for both low- and high-pressure measurements, due to increased carbon-metal contact and activation of the catalyst. At 69 bar (or 1,000 psia), the hydrogen adsorption and desorption of the MWNT/NiMgO system were 3.7% and 3.6%, respectively.
引用
收藏
页码:1556 / 1568
页数:13
相关论文
共 46 条
[1]  
BOCKRATH BC, 2002, AICHE M
[2]   ON SLOW UPTAKE OF HYDROGEN BY PLATINIZED CARBON [J].
BOUDART, M ;
ALDAG, AW ;
VANNICE, MA .
JOURNAL OF CATALYSIS, 1970, 18 (01) :46-&
[3]   Studies into the storage of hydrogen in carbon nanofibers: Proposal of a possible reaction mechanism [J].
Browning, DJ ;
Gerrard, ML ;
Lakeman, JB ;
Mellor, IM ;
Mortimer, RJ ;
Turpin, MC .
NANO LETTERS, 2002, 2 (03) :201-205
[4]  
Cassell AM, 1999, J PHYS CHEM B, V103, P6484, DOI 10.1021/jp990957sCCC:$18.00
[5]   High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures [J].
Chen, P ;
Wu, X ;
Lin, J ;
Tan, KL .
SCIENCE, 1999, 285 (5424) :91-93
[6]   Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a Ni-MgO catalyst [J].
Chen, P ;
Zhang, HB ;
Lin, GD ;
Hong, Q ;
Tsai, KR .
CARBON, 1997, 35 (10-11) :1495-1501
[7]   Hydrogen storage in carbon nanotubes [J].
Cheng, HM ;
Yang, QH ;
Liu, C .
CARBON, 2001, 39 (10) :1447-1454
[8]   Monte Carlo simulations of nitrogen and hydrogen physisorption at high pressures and room temperature. Comparison with experiments [J].
Darkrim, F ;
Vermesse, J ;
Malbrunot, P ;
Levesque, D .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (08) :4020-4027
[9]   Review of hydrogen storage by adsorption in carbon nanotubes [J].
Darkrim Lamari, F ;
Malbrunot, P ;
Tartaglia, GP .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (02) :193-202
[10]   Improvement of hydrogen storage by adsorption using 2-D modeling of heat effects [J].
Delahaye, A ;
Aoufi, A ;
Gicquel, A ;
Pentchev, I .
AICHE JOURNAL, 2002, 48 (09) :2061-2073