Investigating the Hydrothermal Growth of Zinc Oxide Nanostructures Through Seed Layer Control

被引:3
作者
Bendall, James S. [1 ]
Tan, Swee Ching [1 ]
机构
[1] Univ Cambridge, Nanosci Ctr, Cambridge CB3 0FF, England
来源
ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS | 2011年 / 225卷 / 03期
关键词
Zinc Oxide; Hydrothermal Growth; Roughness Analysis; Solar Cells; SENSITIZED SOLAR-CELLS; PHOTOELECTROCHEMICAL PERFORMANCE; ZNO NANOSTRUCTURES; THIN-FILMS; NANOWIRES; NANORODS; ARRAYS;
D O I
10.1524/zpch.2011.0045
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Controlling the growth of ZnO nanostructures for photovoltaic applications will ensure greater device efficiency and parameter control. This paper reports on methods to engineer the morphology and tailor the nanostructure growth direction through the hydrothermal synthesis method. Effective control is achieved through the use of a sputtered zinc layer together with modifications of the growth solution. These nanostructures have been developed with a view to incorporation into excitonic solar cells, and methods to improve surface stability using a fully aqueous synthesis method will be discussed.
引用
收藏
页码:341 / 350
页数:10
相关论文
共 34 条
[1]   Nanoconfined surfactant templated electrodeposition to porous hierarchical nanowires and nanotubes [J].
Baber, S. ;
Zhou, M. ;
Lin, Q. L. ;
Naalla, M. ;
Jia, Q. X. ;
Lu, Y. ;
Luo, H. M. .
NANOTECHNOLOGY, 2010, 21 (16)
[2]   Synthesis and photoluminescence studies on ZnO nanowires [J].
Banerjee, D ;
Lao, JY ;
Wang, DZ ;
Huang, JY ;
Steeves, D ;
Kimball, B ;
Ren, ZF .
NANOTECHNOLOGY, 2004, 15 (03) :404-409
[3]   ZnO-organic hybrid white light emitting diodes grown on flexible plastic using low temperature aqueous chemical method [J].
Bano, N. ;
Zaman, S. ;
Zainelabdin, A. ;
Hussain, S. ;
Hussain, I. ;
Nur, O. ;
Willander, M. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (04)
[4]   An investigation into the growth conditions and defect states of laminar ZnO nanostructures [J].
Bendall, J. S. ;
Visimberga, G. ;
Szachowicz, M. ;
Plank, N. O. V. ;
Romanov, S. ;
Sotomayor-Torres, C. M. ;
Welland, M. E. .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (43) :5259-5266
[5]   Block Copolymer Micellar Nanoreactors for the Directed Synthesis of ZnO Nanoparticles [J].
Braun, Christoph H. ;
Richter, Thomas V. ;
Schacher, Felix ;
Mueller, Axel H. E. ;
Crossland, Edward J. W. ;
Ludwigs, Sabine .
MACROMOLECULAR RAPID COMMUNICATIONS, 2010, 31 (08) :729-734
[6]   High performance ZnO nanowire field effect transistor using self-aligned nanogap gate electrodes [J].
Cha, S. N. ;
Jang, J. E. ;
Choi, Y. ;
Amaratunga, G. A. J. ;
Ho, G. W. ;
Welland, M. E. ;
Hasko, D. G. ;
Kang, D-J. ;
Kim, J. M. .
APPLIED PHYSICS LETTERS, 2006, 89 (26)
[7]   The substrate effect on the in-plane orientation of vertically well-aligned ZnO nanorods grown on ZnO buffer layers [J].
Cheng, HM ;
Hsu, HC ;
Yang, S ;
Wu, CY ;
Lee, YC ;
Lin, LJ ;
Hsieh, WF .
NANOTECHNOLOGY, 2005, 16 (12) :2882-2886
[8]   Hollow Urchin-like ZnO thin Films by Electrochemical Deposition [J].
Elias, Jamil ;
Levy-Clement, Claude ;
Bechelany, Mikhael ;
Michler, Johann ;
Wang, Guillaume-Yangshu ;
Wang, Zhao ;
Philippe, Laetitia .
ADVANCED MATERIALS, 2010, 22 (14) :1607-+
[9]   Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review [J].
Gonzalez-Valls, Irene ;
Lira-Cantu, Monica .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (01) :19-34
[10]   Tuning of the Electronic Characteristics of ZnO Nanowire Field Effect Transistors by Proton Irradiation [J].
Hong, Woong-Ki ;
Jo, Gunho ;
Sohn, Jung Inn ;
Park, Woojin ;
Choe, Minhyeok ;
Wang, Gunuk ;
Kahng, Yung Ho ;
Welland, Mark E. ;
Lee, Takhee .
ACS NANO, 2010, 4 (02) :811-818