The microscopic features of (Li0.5La0.5)TiO3

被引:19
作者
Chung, HT [1 ]
Cheong, DS
机构
[1] Dongshin Univ, Dept Ceram Engn, Naju 520714, Chonnam, South Korea
[2] KIST, Div Ceram, Seoul 130650, South Korea
关键词
perovskite structure; lithium ionic conductivity; superstructure; ordering;
D O I
10.1016/S0167-2738(98)00439-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In ionic conducting materials, the crystal structure is closely related to the ionic conductivity. In this research we studied the microscopic features of Li0.5La0.5TiO3 which exhibited a lithium ionic conductivity as high as 1 x 10(-3) Scm(-1) at room temperature by XRD, TEM and SIMS. It was found that the superstructure was caused by the ordering of La+3 and vacancy, producing the 2a(p) x 2a(p) x 2a(p) unit cell. This ordering was found to be regular in microscopic region, but became irregular in macroscopic region. Li+ showed a random distribution which meet the needs for the fast ionic conduction. The second phase was found to be Li2TiO3 which existed in the grain boundary junctions. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:197 / 204
页数:8
相关论文
共 13 条
[1]   X-RAY STUDY OF DEFICIENT PEROVSKITE LA2-3TIO3 [J].
ABE, M ;
UCHINO, K .
MATERIALS RESEARCH BULLETIN, 1974, 9 (02) :147-155
[2]   Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate [J].
Bohnke, O ;
Bohnke, C ;
Fourquet, JL .
SOLID STATE IONICS, 1996, 91 (1-2) :21-31
[3]   Dependence of the lithium ionic conductivity on the B-site ion substitution in (Li0.5La0.5)Ti1-xMxO3 (M = Sn, Zr, Mn, Ge) [J].
Chung, HT ;
Kim, JG ;
Kim, HG .
SOLID STATE IONICS, 1998, 107 (1-2) :153-160
[4]  
GAREIAMARTIN S, 1997, J SOLID STATE CHEM, V128, P97
[5]   CANDIDATE COMPOUNDS WITH PEROVSKITE STRUCTURE FOR HIGH LITHIUM IONIC-CONDUCTIVITY [J].
INAGUMA, Y ;
CHEN, LQ ;
ITOH, M ;
NAKAMURA, T .
SOLID STATE IONICS, 1994, 70 :196-202
[6]   HIGH IONIC-CONDUCTIVITY IN LITHIUM LANTHANUM TITANATE [J].
INAGUMA, Y ;
CHEN, LQ ;
ITOH, M ;
NAKAMURA, T ;
UCHIDA, T ;
IKUTA, H ;
WAKIHARA, M .
SOLID STATE COMMUNICATIONS, 1993, 86 (10) :689-693
[7]   THE EFFECT OF THE HYDROSTATIC-PRESSURE ON THE IONIC-CONDUCTIVITY IN A PEROVSKITE LANTHANUM LITHIUM TITANATE [J].
INAGUMA, Y ;
YU, JD ;
SHAN, YJ ;
ITOH, M ;
NAKAMURA, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (01) :L8-L11
[8]   HIGH LITHIUM ION CONDUCTIVITY IN THE PEROVSKITE-TYPE COMPOUNDS LN1/2LI1/2TIO3 (LN=LA,PR,ND,SM) [J].
ITOH, M ;
INAGUMA, Y ;
JUNG, WH ;
CHEN, LQ ;
NAKAMURA, T .
SOLID STATE IONICS, 1994, 70 (pt 1) :203-207
[9]  
IZUMI F, 1993, RIETVELD METHOD, pCH13
[10]   LITHIUM ION CONDUCTIVITY OF A-SITE DEFICIENT PEROVSKITE SOLID-SOLUTION LA0.67-XLI3XTIO3 [J].
KAWAI, H ;
KUWANO, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (07) :L78-L79