Ar, O2, CHF3, and SF6 plasma treatments of screen-printed carbon nanotube films for electrode applications

被引:59
作者
Hou, Zhonyu [1 ]
Cai, Binchu [1 ]
Liu, Hai [1 ]
Xu, Dong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Res Inst Micro Nano Sci & Technol, Key Lab Thin Film & Microfabricat, Minist Educ,Natl Key Lab Micro Nano Fibricat Tech, Shanghai 200030, Peoples R China
关键词
D O I
10.1016/j.carbon.2007.11.053
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper investigates the consequence of the material property and the plasma gas chemistry (herein referred to the plasma gas-feeding species and methods) on the electrode performance in plasma treatments of screen-printed carbon nanotube (CNT) films. Four plasma gases (Ar, O-2, SF6, and CHF3) and three gas-feeding methods were examined. The surface morphology, microstructure, and composition of 11 sample groups have been carefully characterized. Tests of the CNT film electrode subjected to gas discharge and field emission show that surface morphology modification is the most influential factor in respect of lowering the onset voltages. In detail, O-2/Ar (O-2 followed by Ar) and Ar + CHF3 + SF6 (mixed three gases) treatments are the best choices for ionization and field emission applications, respectively The relevant results are even better than that of the samples of aligned CNT films prepared by chemical vapor deposition. The underlying mechanisms are modeled by two opposing processes (etching and coating), which phenomenally produce three competing effects, i.e., CNT protruding, bundle forming, and neo-nanostructure forming. The results and the correct behavior of our model suggest that the plasma gas chemistry is the most fundamental factor in the process of plasma treatments of CNT films. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:405 / 413
页数:9
相关论文
共 42 条
[1]  
BHUSHAN B, 2004, HDB NANOTECHNOLOGY, P39
[2]   Can we reliably estimate the emission field and field enhancement factor of carbon nanotube film field emitters? [J].
Bonard, JM ;
Croci, M ;
Arfaoui, I ;
Noury, O ;
Sarangi, D ;
Châtelain, A .
DIAMOND AND RELATED MATERIALS, 2002, 11 (3-6) :763-768
[3]   Field emission from carbon nanotubes:: the first five years [J].
Bonard, JM ;
Kind, H ;
Stöckli, T ;
Nilsson, LA .
SOLID-STATE ELECTRONICS, 2001, 45 (06) :893-914
[4]  
Bonard JM, 2001, ADV MATER, V13, P184, DOI 10.1002/1521-4095(200102)13:3<184::AID-ADMA184>3.0.CO
[5]  
2-I
[6]   Field emission of individual carbon nanotubes in the scanning electron microscope [J].
Bonard, JM ;
Dean, KA ;
Coll, BF ;
Klinke, C .
PHYSICAL REVIEW LETTERS, 2002, 89 (19) :1-197602
[7]   Characterization of the uppermost layer of plasma-treated carbon nanotubes [J].
Bubert, H ;
Haiber, S ;
Brandl, W ;
Marginean, G ;
Heintze, M ;
Brüser, V .
DIAMOND AND RELATED MATERIALS, 2003, 12 (3-7) :811-815
[8]   Plasma activation of carbon nanotubes for chemical modification [J].
Chen, QD ;
Dai, LM ;
Gao, M ;
Huang, SM ;
Mau, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (03) :618-622
[9]   Effect of the oxygen plasma treatment parameters on the carbon nanotubes surface properties [J].
Chirila, V ;
Marginean, G ;
Brandl, W .
SURFACE & COATINGS TECHNOLOGY, 2005, 200 (1-4) :548-551
[10]   A CARBON NANOTUBE FIELD-EMISSION ELECTRON SOURCE [J].
DEHEER, WA ;
CHATELAIN, A ;
UGARTE, D .
SCIENCE, 1995, 270 (5239) :1179-1180