Temporal data mining

被引:18
作者
Post, Andrew R. [1 ]
Harrison, James H. [1 ,2 ]
机构
[1] Univ Virginia, Dept Publ Hlth Sci, Div Clin Informat, Charlottesville, VA 22908 USA
[2] Univ Virginia, Dept Pathol, Div Clin Informat, Charlottesville, VA 22908 USA
关键词
D O I
10.1016/j.cll.2007.10.005
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Large-scale clinical databases provide a detailed perspective on patient phenotype in disease and the characteristics of health care processes. Important information is often contained in the relationships between the values and timestamps of sequences of clinical data. The analysis of clinical time sequence data across entire patient populations may reveal data patterns that enable a more precise understanding of disease presentation, progression, and response to therapy, and thus could be of great value for clinical and translational research. Recent work suggests that the combination of temporal data mining methods with techniques from artificial intelligence research on knowledge-based temporal abstraction may enable the mining of clinically relevant temporal features from these previously problematic general clinical data.
引用
收藏
页码:83 / +
页数:19
相关论文
共 52 条
[1]   Temporal representation and reasoning in medicine: Research directions and challenges [J].
Adlassnig, Klaus-Peter ;
Combi, Carlo ;
Das, Amar K. ;
Keravnou, Elpida T. ;
Pozzi, Giuseppe .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2006, 38 (02) :101-113
[2]  
Agrawal R., 1994, P 20 INT C VER LARG
[3]   MAINTAINING KNOWLEDGE ABOUT TEMPORAL INTERVALS [J].
ALLEN, JF .
COMMUNICATIONS OF THE ACM, 1983, 26 (11) :832-843
[4]   Myocardial infarction redefined -: A consensus Document of the Joint European Society of Cardiology/American College of Cardiology Committee for the Redefinition of Myocardial Infarction [J].
Alpert, JS ;
Antman, E ;
Apple, F ;
Armstrong, PW ;
Bassand, JP ;
de Luna, AB ;
Beller, G ;
Breithardt, G ;
Chaitman, BR ;
Clemmensen, P ;
Falk, E ;
Fishbein, MC ;
Galvani, M ;
Garson, A ;
Grines, C ;
Hamm, C ;
Jaffe, A ;
Katus, H ;
Kjekshus, J ;
Klein, W ;
Klootwijk, P ;
Lenfant, C ;
Levy, D ;
Levy, RI ;
Luepker, R ;
Marcus, F ;
Näslund, U ;
Ohman, M ;
Pahlm, O ;
Poole-Wilson, P ;
Popp, R ;
Alto, P ;
Pyörälä, K ;
Ravkilde, J ;
Rehnquist, N ;
Roberts, W ;
Roberts, R ;
Roelandt, J ;
Rydén, L ;
Sans, S ;
Simoons, ML ;
Thygesen, K ;
Tunstall-Pedoe, H ;
Underwood, R ;
Uretsky, BF ;
Van de Werf, F ;
Voipio-Pulkki, LM ;
Wagner, G ;
Wallentin, L ;
Wijns, W .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2000, 36 (03) :959-969
[5]   Information mining over heterogeneous and high-dimensional time-series data in clinical trials databases [J].
Altiparmak, F ;
Ferhatosmanoglu, H ;
Erdal, S ;
Trost, DC .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2006, 10 (02) :254-263
[6]  
ANTUNES CM, 2001, P KNOWL DISC DAT MIN
[7]   Temporal data mining for the quality assessment of hemodialysis services [J].
Belazzi, R ;
Larizza, C ;
Magni, P ;
Bellazzi, R .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2005, 34 (01) :25-39
[8]  
Bellazzi Riccardo, 1998, Intelligent Data Analysis, V2, P97
[9]  
CHATFIELD C, 1989, ANAL TIME SERIES
[10]   TEMPORAL CONSTRAINT NETWORKS [J].
DECHTER, R ;
MEIRI, I ;
PEARL, J .
ARTIFICIAL INTELLIGENCE, 1991, 49 (1-3) :61-95