Δψm-dependent and -independent production of reactive oxygen species by rat brain mitochondria

被引:499
作者
Votyakova, TV [1 ]
Reynolds, IJ [1 ]
机构
[1] Univ Pittsburgh, Dept Pharmacol, Pittsburgh, PA 15261 USA
关键词
amplex red; free radicals; mitochondrial membrane potential; rotenone; scopoletin;
D O I
10.1046/j.1471-4159.2001.00548.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondria are widely believed to be the source of reactive oxygen species (ROS) in a number of neurodegenerative disease states. However, conditions associated with neuronal injury are accompanied by other alterations in mitochondrial physiology, including profound changes in the mitochondria[ membrane potential Delta psi (m). In this study we have investigated the effects of Delta psi (m) on ROS production by rat brain mitochondria using the fluorescent peroxidase substrates scopoletin and Amplex red. The highest rates of mitochondrial ROS generation were observed while mitochondria were respiring on the complex II substrate succinate. Under this condition, the majority of the. ROS signal was derived from reverse electron transport to complex I, because it was inhibited by rotenone. This mode of ROS generation is very sensitive to depolarization of Delta psi (m), and even the depolarization associated with ATP generation was sufficient to inhibit ROS production. Mitochondria respiring on the complex I substrates, glutamate and malate, produce very little ROS until complex I is inhibited with rotenone, which is also consistent with complex I being the major site of ROS generation. This mode of oxidant production is insensitive to changes in Delta psi (m). With both substrates, ubiquinone-derived ROS can be detected, but they represent a more minor component of the overall oxidant signal. These studies demonstrate that rat brain mitochondria can be effective producers of ROS. However, the optimal conditions for ROS generation require either a hyperpolarized membrane potential or a substantial level of complex I inhibition.
引用
收藏
页码:266 / 277
页数:12
相关论文
共 59 条
[1]   SAFRANINE AS A PROBE OF MITOCHONDRIAL-MEMBRANE POTENTIAL [J].
AKERMAN, KEO ;
WIKSTROM, MKF .
FEBS LETTERS, 1976, 68 (02) :191-197
[2]   Nitric oxide, superoxide, and hydrogen peroxide production in brain mitochondria after haloperidol treatment [J].
Arnaiz, SL ;
Coronel, MF ;
Boveris, A .
NITRIC OXIDE-BIOLOGY AND CHEMISTRY, 1999, 3 (03) :235-243
[3]   Localization at complex I and mechanism of the higher free radical production of brain nonsynaptic mitochondria in the short-lived rat than in the longevous pigeon [J].
Barja, G ;
Herrero, A .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1998, 30 (03) :235-243
[4]  
BEAL MF, 1997, MITOCHONDRIA FREE RA
[5]  
Bindokas VP, 1996, J NEUROSCI, V16, P1324
[6]   MITOCHONDRIAL GENERATION OF HYDROGEN-PEROXIDE - GENERAL PROPERTIES AND EFFECT OF HYPERBARIC-OXYGEN [J].
BOVERIS, A ;
CHANCE, B .
BIOCHEMICAL JOURNAL, 1973, 134 (03) :707-716
[7]   MITOCHONDRIAL PRODUCTION OF SUPEROXIDE ANIONS AND ITS RELATIONSHIP TO ANTIMYCIN INSENSITIVE RESPIRATION [J].
BOVERIS, A ;
CADENAS, E .
FEBS LETTERS, 1975, 54 (03) :311-314
[8]   ROLE OF UBIQUINONE IN MITOCHONDRIAL GENERATION OF HYDROGEN-PEROXIDE [J].
BOVERIS, A ;
CADENAS, E ;
STOPPANI, AOM .
BIOCHEMICAL JOURNAL, 1976, 156 (02) :435-444
[9]   CELLULAR PRODUCTION OF HYDROGEN-PEROXIDE [J].
BOVERIS, A ;
CHANCE, B ;
OSHINO, N .
BIOCHEMICAL JOURNAL, 1972, 128 (03) :617-&
[10]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3