Mean-field and anomalous behavior on a small-world network

被引:45
作者
Hastings, MB [1 ]
机构
[1] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
关键词
D O I
10.1103/PhysRevLett.91.098701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider various equilibrium statistical mechanics models with combined short- and long-range interactions and identify the crossover to mean-field behavior, finding anomalous scaling in the width of the mean-field region, as well as in the mean-field amplitudes. We then show that this model enables us, in many cases, to determine the universal critical properties of systems on a small-world network. Finally, we consider nonequilibrium processes.
引用
收藏
页数:4
相关论文
共 18 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   On the properties of small-world network models [J].
Barrat, A ;
Weigt, M .
EUROPEAN PHYSICAL JOURNAL B, 2000, 13 (03) :547-560
[3]   Small-world phenomena in physics: the Ising model [J].
Gitterman, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (47) :8373-8381
[4]   Critical phenomena in networks [J].
Goltsev, AV ;
Dorogovtsev, SN ;
Mendes, JFF .
PHYSICAL REVIEW E, 2003, 67 (02) :5-261235
[5]   EFFECT OF RANDOM DEFECTS ON CRITICAL BEHAVIOR OF ISING MODELS [J].
HARRIS, AB .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1974, 7 (09) :1671-1692
[6]   CONTACT INTERACTIONS ON A LATTICE [J].
HARRIS, TE .
ANNALS OF PROBABILITY, 1974, 2 (06) :969-988
[7]   Ising model in small-world networks [J].
Herrero, CP .
PHYSICAL REVIEW E, 2002, 65 (06) :1-066110
[8]   NOTES ON MIGDALS RECURSION FORMULAS [J].
KADANOFF, LP .
ANNALS OF PHYSICS, 1976, 100 (1-2) :359-394
[9]   CROSSOVER TO EQUIVALENT-NEIGHBOR MULTICRITICAL BEHAVIOR IN ARBITRARY DIMENSIONS [J].
KARDAR, M .
PHYSICAL REVIEW B, 1983, 28 (01) :244-246
[10]   XY model in small-world networks [J].
Kim, B.J. ;
Hong, H. ;
Holme, P. ;
Jeon, G.S. ;
Minnhagen, P. ;
Choi, M.Y. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (5 II) :1-056135