An evaluation of the PoLiSh smoothed regression and the Monte Carlo Cross-Validation for the determination of the complexity of a PLS model

被引:41
作者
Gourvénec, S
Pierna, JAF
Massart, DL
Rutledge, DN
机构
[1] Free Univ Brussels, Inst Pharmaceut, ChemoAC, B-1090 Brussels, Belgium
[2] Inst Natl Agron Paris Grignon, Chim Analyt Lab, F-75005 Paris, France
关键词
PLS; complexity; Monte Carlo Cross-Validation; smoothing; Durbin-Watson criterion; adjusted Wold's R criterion;
D O I
10.1016/S0169-7439(03)00086-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A crucial point of the PLS algorithm is the selection of the right number of factors or components (i.e., the determination of the optimal complexity of the system to avoid overfitting). The leave-one-out cross-validation is usually used to determine the optimal complexity of a PLS model, but in practice, it is found that often too many components are retained with this method. In this study, the Monte Carlo Cross-Validation (MCCV) and the PoLiSh smoothed regression are used and compared with the better known adjusted Wold's R criterion. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 51
页数:11
相关论文
共 16 条
  • [1] [Anonymous], 1988, CHEMOMETRICS TXB
  • [2] Detection of nonlinearity in multivariate calibration
    Centner, V
    de Noord, OE
    Massart, DL
    [J]. ANALYTICA CHIMICA ACTA, 1998, 376 (02) : 153 - 168
  • [3] Draper N. R., 1966, APPL REGRESSION ANAL
  • [4] PARTIAL LEAST-SQUARES REGRESSION - A TUTORIAL
    GELADI, P
    KOWALSKI, BR
    [J]. ANALYTICA CHIMICA ACTA, 1986, 185 : 1 - 17
  • [5] PARTIAL LEAST-SQUARES METHODS FOR SPECTRAL ANALYSES .1. RELATION TO OTHER QUANTITATIVE CALIBRATION METHODS AND THE EXTRACTION OF QUALITATIVE INFORMATION
    HAALAND, DM
    THOMAS, EV
    [J]. ANALYTICAL CHEMISTRY, 1988, 60 (11) : 1193 - 1202
  • [6] PARTIAL LEAST-SQUARES METHODS FOR SPECTRAL ANALYSES .2. APPLICATION TO SIMULATED AND GLASS SPECTRAL DATA
    HAALAND, DM
    THOMAS, EV
    [J]. ANALYTICAL CHEMISTRY, 1988, 60 (11) : 1202 - 1208
  • [7] Two data sets of near infrared spectra
    Kalivas, JH
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1997, 37 (02) : 255 - 259
  • [8] CROSS-VALIDATION OF REGRESSION-MODELS
    PICARD, RR
    COOK, RD
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1984, 79 (387) : 575 - 583
  • [9] Preliminary results of an interlaboratory study of chemometric software and methods on NIR data.: Predicting the content of crude protein and water in forages
    Ruisánchez, I
    Rius, F
    Maspoch, S
    Coello, J
    Azzouz, T
    Tauler, R
    Sarabia, L
    Ortiz, MC
    Fernández, JA
    Massart, D
    Puigdomènech, A
    Garcíia, C
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2002, 63 (02) : 93 - 105
  • [10] PoLiSh - smoothed partial least-squares regression
    Rutledge, DN
    Barros, A
    Delgadillo, I
    [J]. ANALYTICA CHIMICA ACTA, 2001, 446 (1-2) : 281 - 296