Characterising elegant and standard Hermite-Gaussian beam modes

被引:74
作者
Saghafi, S [1 ]
Sheppard, CJR
Piper, JA
机构
[1] Macquarie Univ, Dept Phys, Sydney, NSW 2109, Australia
[2] Univ Sydney, Sch Phys, Dept Phys Opt, Sydney, NSW 2109, Australia
关键词
M-2; kurtosis; higher-order Gaussian; beam propagation;
D O I
10.1016/S0030-4018(01)01110-5
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Two tool parameters, the beam propagation factor M-2 and kurtosis factor k, are used to analyse solutions of the paraxial scalar wave equation (for rectangular coordinates) i.e. the so-called the standard and elegant Hermite-Gaussian modes (SHG and EHG). Analytical expressions for M-2 and k are derived and the correspondence between them for each form of solution is discussed in detail. These two parameters reveal information about the solutions, which leads us to derive the asymptotic representation of EHG modes (i.e. in the near-field, for a large number of modes). (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:173 / 179
页数:7
相关论文
共 14 条
[1]  
[Anonymous], PHYS TECHNOLOGY LASE
[2]  
Gradshteyn I. S., 1980, TABLE INTEGRALS SERI
[3]  
JOHNSTON TF, 1990, LASER FOCUS WORL MAY, P173
[4]  
KOGELNIK H, 1966, P I ELECT ELECT ENG, V1312, P54
[5]  
Laabs H, 1999, J MOD OPTIC, V46, P709
[6]   ON THE PROPAGATION OF THE KURTOSIS PARAMETER OF GENERAL BEAMS [J].
MARTINEZHERRERO, R ;
PIQUERO, G ;
MEJIAS, PM .
OPTICS COMMUNICATIONS, 1995, 115 (3-4) :225-232
[7]   The beam propagation factor for higher order Gaussian beams [J].
Saghafi, S ;
Sheppard, CJR .
OPTICS COMMUNICATIONS, 1998, 153 (4-6) :207-210
[8]  
Saghafi S, 1998, J MOD OPTIC, V45, P1999, DOI 10.1080/09500349808231738
[9]   GAUSSIAN-BEAM MODES BY MULTIPOLES WITH COMPLEX SOURCE POINTS [J].
SHIN, SY ;
FELSEN, LB .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1977, 67 (05) :699-700
[10]   HERMITE-GAUSSIAN FUNCTIONS OF COMPLEX ARGUMENT AS OPTICAL-BEAM EIGENFUNCTIONS [J].
SIEGMAN, AE .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1973, 63 (09) :1093-1094