Pattern-recognition receptors in plant innate immunity

被引:460
作者
Zipfel, Cyril [1 ]
机构
[1] John Innes Inst, Sainsbury Lab, Norwich NR4 7UH, Norfolk, England
关键词
D O I
10.1016/j.coi.2007.11.003
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Perception of pathogen-associated molecular patterns (PAMPs) constitutes the first layer of plant innate immunity and is referred to as PAMP-triggered immunity (PTI). For a long time, part of the plant community was sceptical about the importance of PAMP perception in plants. Genetic and biochemical studies have recently identified pattern-recognition receptors (PRRs) involved in the perception of bacteria, fungi and oomycetes. Interestingly, some of the structural domains present in PRRs are similar in plants and animals, suggesting convergent evolution. Lack of PAMP perception leads to enhanced disease susceptibility, demonstrating the importance of PAMP perception for immunity against pathogens in vivo. Recently, proteins with known roles in development have been shown to control immediate PRR-signalling, revealing unexpected complexity in plant signalling. Although many PAMPs recognised by plants have been described and more are likely to be discovered, the number of PRRs known currently is limited. The study of PTI is still in its infancy but constitutes a highly active and competitive field of research. New PRRs and regulators are likely to be soon identified.
引用
收藏
页码:10 / 16
页数:7
相关论文
共 57 条
[1]   Bacterial elicitation and evasion of plant innate immunity [J].
Abramovitch, Robert B. ;
Anderson, Jeffrey C. ;
Martin, Gregory B. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2006, 7 (08) :601-611
[2]   The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis [J].
Albrecht, C ;
Russinova, E ;
Hecht, V ;
Baaijens, E ;
de Vries, S .
PLANT CELL, 2005, 17 (12) :3337-3349
[3]   Pattern recognition receptors: From the cell surface to intracellular dynamics [J].
Altenbach, Denise ;
Robatzek, Silke .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2007, 20 (09) :1031-1039
[4]   Are innate immune signaling pathways in plants and animals conserved? [J].
Ausubel, FM .
NATURE IMMUNOLOGY, 2005, 6 (10) :973-979
[5]   Elicitors, effectors, and R genes:: The new paradigm and a lifetime supply of questions [J].
Bent, Andrew F. ;
Mackey, David .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2007, 45 :399-436
[6]   Microbe-associated molecular patterns (MAMPs) probe plant immunity [J].
Bittel, Pascal ;
Robatzek, Silke .
CURRENT OPINION IN PLANT BIOLOGY, 2007, 10 (04) :335-341
[7]   The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception [J].
Chinchilla, D ;
Bauer, Z ;
Regenass, M ;
Boller, T ;
Felix, G .
PLANT CELL, 2006, 18 (02) :465-476
[8]   A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence [J].
Chinchilla, Delphine ;
Zipfel, Cyril ;
Robatzek, Silke ;
Kemmerling, Birgit ;
Nuernberger, Thorsten ;
Jones, Jonathan D. G. ;
Felix, Georg ;
Boller, Thomas .
NATURE, 2007, 448 (7152) :497-U12
[9]   Host-microbe interactions: Shaping the evolution of the plant immune response [J].
Chisholm, ST ;
Coaker, G ;
Day, B ;
Staskawicz, BJ .
CELL, 2006, 124 (04) :803-814
[10]   Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation [J].
Colcombet, J ;
Boisson-Dernier, A ;
Ros-Palau, R ;
Vera, CE ;
Schroeder, JI .
PLANT CELL, 2005, 17 (12) :3350-3361