Information flows in causal networks

被引:164
作者
Ay, Nihat [1 ,2 ]
Polani, Daniel [3 ]
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] Santa Fe Inst, Santa Fe, NM 87501 USA
[3] Univ Hertfordshire, Sch Comp Sci, Algorithms & Adapt Syst Res Grp, Hatfield AL10 9AB, Herts, England
来源
ADVANCES IN COMPLEX SYSTEMS | 2008年 / 11卷 / 01期
关键词
causality; information theory; information flow; Bayesian networks;
D O I
10.1142/S0219525908001465
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use a notion of causal independence based on intervention, which is a fundamental concept of the theory of causal networks, to define a measure for the strength of a causal effect. We call this measure "information flow" and compare it with known information flow measures such as transfer entropy.
引用
收藏
页码:17 / 41
页数:25
相关论文
共 29 条
  • [1] [Anonymous], COMPLEXITY ENTROPY P
  • [2] ASHYBY WR, 1952, DESIGN BRAIN
  • [3] Could information theory provide an ecological theory of sensory processing?
    Aticky, Joseph J.
    [J]. NETWORK-COMPUTATION IN NEURAL SYSTEMS, 2011, 22 (1-4) : 4 - 44
  • [4] Dynamical properties of strongly interacting Markov chains
    Ay, N
    Wennekers, T
    [J]. NEURAL NETWORKS, 2003, 16 (10) : 1483 - 1497
  • [5] Geometric robustness theory and biological networks
    Ay, Nihat
    Krakauer, David C.
    [J]. THEORY IN BIOSCIENCES, 2007, 125 (02) : 93 - 121
  • [6] Baddeley R., 2000, Information theory and the brain
  • [7] Barlow H., 1959, SENS COMMUN, P217
  • [8] Der R, 1999, CONCUR SYST ENGN SER, V55, P43
  • [9] Axioms of causal relevance
    Galles, D
    Pearl, J
    [J]. ARTIFICIAL INTELLIGENCE, 1997, 97 (1-2) : 9 - 43
  • [10] Representations of space and time in the maximization of information flow in the perception-action loop
    Klyubin, Alexander S.
    Polani, Daniel
    Nehaniv, Chrystopher L.
    [J]. NEURAL COMPUTATION, 2007, 19 (09) : 2387 - 2432