Viral expression of insulin-like growth factor-I enhances muscle hypertrophy in resistance-trained rats

被引:139
作者
Lee, S
Barton, ER
Sweeney, HL
Farrar, RP
机构
[1] Univ Penn, Dept Physiol, Sch Med, Philadelphia, PA 19104 USA
[2] Univ Texas, Dept Kinesiol, Austin, TX 78712 USA
关键词
adeno-associated virus; ladder climbing; detraining;
D O I
10.1152/japplphysiol.00479.2003
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Muscle hypertrophy is the product of increased drive through protein synthetic pathways and the incorporation of newly divided satellite cells. Gains in muscle mass and strength can be achieved through exercise regimens that include resistance training. Increased insulin-like growth factor-I (IGF-I) can also promote hypertrophy through increased protein synthesis and satellite cell proliferation. However, it is not known whether the combined effect of IGF-I and resistance training results in an additive hypertrophic response. Therefore, rats in which viral administration of IGF-I was directed to one limb were subjected to ladder climbing to test the interaction of each intervention on muscle mass and strength. After 8 wk of resistance training, a 23.3% increase in muscle mass and a 14.4% increase in peak tetanic tension (P-o) were observed in the flexor hallucis longus (FHL). Viral expression of IGF-I without resistance training produced a 14.8% increase in mass and a 16.6% increase in P-o in the FHL. The combined interventions produced a 31.8% increase in muscle mass and a 28.3% increase in P-o in the FHL. Therefore, the combination of resistance training and overexpression of IGF-I induced greater hypertrophy than either treatment alone. The effect of increased IGF-I expression on the loss of muscle mass associated with detraining was also addressed. FHL muscles treated with IGF-I lost only 4.8% after detraining, whereas the untreated FHL lost 8.3% muscle mass. These results suggest that a combination of resistance training and overexpression of IGF-I could be an effective measure for attenuating the loss of training-induced adaptations.
引用
收藏
页码:1097 / 1104
页数:8
相关论文
共 37 条
[1]   Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats [J].
Adams, GR ;
McCue, SA .
JOURNAL OF APPLIED PHYSIOLOGY, 1998, 84 (05) :1716-1722
[2]   HEPATOCYTE GROWTH-FACTOR ACTIVATES QUIESCENT SKELETAL-MUSCLE SATELLITE CELLS IN-VITRO [J].
ALLEN, RE ;
SHEEHAN, SM ;
TAYLOR, RG ;
KENDALL, TL ;
RICE, GM .
JOURNAL OF CELLULAR PHYSIOLOGY, 1995, 165 (02) :307-312
[3]   Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice [J].
Barton, ER ;
Morris, L ;
Musaro, A ;
Rosenthal, N ;
Sweeney, HL .
JOURNAL OF CELL BIOLOGY, 2002, 157 (01) :137-147
[4]  
Barton-Davis ER, 1999, ACTA PHYSIOL SCAND, V167, P301
[5]   Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function [J].
Barton-Davis, ER ;
Shoturma, DI ;
Musaro, A ;
Rosenthal, N ;
Sweeney, HL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (26) :15603-15607
[6]   MOLECULAR AND CELLULAR ADAPTATION OF MUSCLE IN RESPONSE TO EXERCISE - PERSPECTIVES OF VARIOUS MODELS [J].
BOOTH, FW ;
THOMASON, DB .
PHYSIOLOGICAL REVIEWS, 1991, 71 (02) :541-585
[7]   CONTRACTILE PROPERTIES OF SKELETAL-MUSCLES FROM YOUNG, ADULT AND AGED MICE [J].
BROOKS, SV ;
FAULKNER, JA .
JOURNAL OF PHYSIOLOGY-LONDON, 1988, 404 :71-82
[8]  
CARLSON BM, 1983, MED SCI SPORT EXER, V15, P187
[9]   MYOGENIC VECTOR EXPRESSION OF INSULIN-LIKE GROWTH-FACTOR-I STIMULATES MUSCLE-CELL DIFFERENTIATION AND MYOFIBER HYPERTROPHY IN TRANSGENIC MICE [J].
COLEMAN, ME ;
DEMAYO, F ;
YIN, KC ;
LEE, HM ;
GESKE, R ;
MONTGOMERY, C ;
SCHWARTZ, RJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (20) :12109-12116
[10]   EXERCISE-INDUCED SATELLITE CELL ACTIVATION IN GROWING AND MATURE SKELETAL-MUSCLE [J].
DARR, KC ;
SCHULTZ, E .
JOURNAL OF APPLIED PHYSIOLOGY, 1987, 63 (05) :1816-1821