Biophysical approaches to protein-induced membrane deformations in trafficking

被引:116
作者
Sens, Pierre [2 ]
Johannes, Ludger [3 ]
Bassereau, Patricia [1 ]
机构
[1] Univ Paris 06, CNRS, Inst Curie,Ctr Rech, Lab Physicochim Curie,UMR168, F-75248 Paris 05, France
[2] CNRS, ESPCI, Lab Gulliver, UMR 7083, F-75231 Paris 05, France
[3] CNRS, Ctr Rech, Inst Curie,UMR Curie 168, Lab Traf Signalisat & Ciblage Intracellulaires, F-75248 Paris 05, France
关键词
D O I
10.1016/j.ceb.2008.04.004
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Membrane traffic requires membrane deformation to generate vesicles and tubules. Strong evidence suggests that assembly of curvature-active proteins can drive such membrane shape changes. Well-documented pathways often involve protein scaffolds, in particular coats (clathrin or COP). However, membrane curvature should, in principle, be influenced by any protein binding asymmetrically on a membrane; large membrane morphological changes could result from their aggregation. In the case of Shiga toxin or viral matrix proteins, tubules and buds appear to result from the cargo-driven formation of protein-lipid nanodomains, showing that collective protein behaviour is crucial in the process. We argue here that a combination of in vitro experiments on giant unilamellar vesicles and theoretical modelling based on statistical physics is ideally suited to tackle these collective effects.
引用
收藏
页码:476 / 482
页数:7
相关论文
共 49 条
[1]   Membrane deformation by protein coats [J].
Antonny, Bruno .
CURRENT OPINION IN CELL BIOLOGY, 2006, 18 (04) :386-394
[2]   Electrostatic repulsion of positively charged vesicles and negatively charged objects [J].
Aranda-Espinoza, H ;
Chen, Y ;
Dan, N ;
Lubensky, TC ;
Nelson, P ;
Ramos, L ;
Weitz, DA .
SCIENCE, 1999, 285 (5426) :394-397
[3]   To see or not to see: Lateral organization of biological membranes and fluorescence microscopy [J].
Bagatolli, Luis A. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2006, 1758 (10) :1541-1556
[4]   In vitro dissection of the membrane and RNP binding activities of influenza virus M1 protein [J].
Baudin, F ;
Petit, I ;
Weissenhorn, W ;
Ruigrok, RWH .
VIROLOGY, 2001, 281 (01) :102-108
[5]   Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension [J].
Baumgart, T ;
Hess, ST ;
Webb, WW .
NATURE, 2003, 425 (6960) :821-824
[6]   The mechanisms of vesicle budding and fusion [J].
Bonifacino, JS ;
Glick, BS .
CELL, 2004, 116 (02) :153-166
[7]   Model membrane systems and their applications [J].
Chan, Yee-Hung M. ;
Boxer, Steven G. .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2007, 11 (06) :581-587
[8]   Pulling long tubes from firmly adhered vesicles [J].
Cuvelier, D ;
Chiaruttini, N ;
Bassereau, P ;
Nassoy, P .
EUROPHYSICS LETTERS, 2005, 71 (06) :1015-1021
[9]   Properties of giant vesicles [J].
Döbereiner, HG .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2000, 5 (3-4) :256-263
[10]   Distribution, lateral mobility and function of membrane proteins incorporated into giant unilamellar vesicles [J].
Doeven, MK ;
Folgering, JHA ;
Krasnikov, V ;
Geertsma, ER ;
van den Bogaart, G ;
Poolman, B .
BIOPHYSICAL JOURNAL, 2005, 88 (02) :1134-1142