Quantum key distribution based on private states: Unconditional security over untrusted channels with zero quantum capacity

被引:51
作者
Horodecki, Karol [1 ]
Horodecki, Michal [1 ]
Horodecki, Pawel [2 ]
Leung, Debbie [3 ]
Oppenheim, Jonathan [4 ]
机构
[1] Univ Gdansk, Dept Math Phys & Comp Sci, PL-80952 Gdansk, Poland
[2] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80952 Gdansk, Poland
[3] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[4] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB2 1TN, England
基金
加拿大自然科学与工程研究理事会;
关键词
quantum key distribution (QKD);
D O I
10.1109/TIT.2008.921870
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we prove unconditional security for a quantum key distribution (QKD) protocol based on distilling pbits (twisted ebits) from an arbitrary untrusted state that is claimed to contain distillable key. Our main result is that we can verify security using only public communication-via parameter estimation of the given untrusted state. The technique applies even to bound-entangled states, thus extending QKD to the regime where the available quantum channel has zero quantum capacity. We also show how to convert our purification-based QKD schemes to prepare/measure schemes.
引用
收藏
页码:2604 / 2620
页数:17
相关论文
共 37 条
[1]  
[Anonymous], 2001, LECT NOTES COMPUTER
[2]   Security proof of quantum cryptography based entirely on entanglement purification [J].
Aschauer, H ;
Briegel, HJ .
PHYSICAL REVIEW A, 2002, 66 (03) :13
[3]  
Ben-Or M, 2005, LECT NOTES COMPUT SC, V3378, P386
[4]  
Bennett C. H., 1984, P IEEE INT C COMP SY, DOI DOI 10.1016/J.TCS.2014.05.025
[5]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[6]   Generalized privacy amplification [J].
Bennett, CH ;
Brassard, G ;
Crepeau, C ;
Maurer, UM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) :1915-1923
[7]   REDUCTION OF QUANTUM ENTROPY BY REVERSIBLE EXTRACTION OF CLASSICAL INFORMATION [J].
BENNETT, CH ;
BRASSARD, G ;
JOZSA, R ;
MAYERS, D ;
PERES, A ;
SCHUMACHER, B ;
WOOTTERS, WK .
JOURNAL OF MODERN OPTICS, 1994, 41 (12) :2307-2314
[8]  
BENOR M, QUANTPH0409062
[9]  
BOILEAU JC, 2007, COMMUNICATION
[10]   Optimal eavesdropping in quantum cryptography with six states [J].
Bruss, D .
PHYSICAL REVIEW LETTERS, 1998, 81 (14) :3018-3021