Influence of land use change on urban heat island derived from multi-sensor data

被引:112
作者
Hu, Yonghong [1 ,2 ]
Jia, Gensuo [1 ]
机构
[1] Chinese Acad Sci, Inst Atmospher Phys, Key Lab Reg Climate Environm Res Temperate E Asia, Beijing 100029, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100029, Peoples R China
关键词
regional climate; urban heat island; satellite; land use change; urbanization; REGIONAL CLIMATE-CHANGE; SURFACE-TEMPERATURE; UNITED-STATES; COVER CHANGE; VEGETATION; URBANIZATION; IMPACT; ASTER; PRECIPITATION; VARIABILITY;
D O I
10.1002/joc.1984
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Regional climate change was demonstrated to be likely influenced by anthropogenic dominated land surface processes. Urban heat island (UHI) is one of the important outcomes of such land surface processes induced by urbanization, and it is an urban climate phenomenon influenced by land use pattern and it represents the difference in albedo, roughness, and heat flux exchange of land surface. This study tries to examine the influence of land use change on UHI in greater Guangzhou from 1980-2007 by analysing Landsat MSS/TM/ETM+ and MODIS satellite data, meteorological records, and census data. All integrated and modified single-channel method was used to retrieve land surface temperature (LST). Decadal changes in land use fraction and UHI pattern show that cropland decreased in parallel to the increase in built-up area and the correlation coefficient reached 0.97. The UHI effect expanded from urban areas to surrounding suburban areas and countryside with an increase in land surface temperature (mean LST increased by 2.48 from 1990 to 2007) and a decrease in the green vegetation fraction (GVF) (mean GVF decreased by 0.16 from 1990 to 2007). The spatial heterogeneity of UHI expansion can be explained by spatial patterns of economic development, population increase, and abundance of vegetation cover. In addition, remarkable changes in air temperature due to relocation of meteorological stations are significant signals for detecting the influence of urbanization on urban heat island. Copyright (C) 2009 Royal Meteorological Society
引用
收藏
页码:1382 / 1395
页数:14
相关论文
共 66 条
[1]   The contributions of land-use change, CO2 fertilization, and climate variability to the Eastern US carbon sink [J].
Albani, Marco ;
Medvigy, David ;
Hurtt, George C. ;
Moorcroft, Paul R. .
GLOBAL CHANGE BIOLOGY, 2006, 12 (12) :2370-2390
[2]   SURVEY OF EMISSIVITY VARIABILITY IN THERMOGRAPHY OF URBAN AREAS [J].
ARTIS, DA ;
CARNAHAN, WH .
REMOTE SENSING OF ENVIRONMENT, 1982, 12 (04) :313-329
[3]  
Barsi Julia A., 2005, EARTH OBSERVING SYST
[4]  
Bastiaanssen WGM, 1998, J HYDROL, V212, P198, DOI [10.1016/S0022-1694(98)00253-4, 10.1016/S0022-1694(98)00254-6]
[5]   On the urban heat island effect dependence on temperature trends [J].
Camilloni, I ;
Barros, V .
CLIMATIC CHANGE, 1997, 37 (04) :665-681
[6]   The impact of land use - land cover changes due to urbanization on surface microclimate and hydrology: a satellite perspective [J].
Carlson, TN ;
Arthur, ST .
GLOBAL AND PLANETARY CHANGE, 2000, 25 (1-2) :49-65
[7]  
Ceccato P, 2002, REMOTE SENS ENVIRON, V82, P198, DOI [10.1016/S0034-4257(02)00036-6, 10.1016/S0034-4257(02)00037-8]
[8]   Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges [J].
Chander, G ;
Markham, B .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (11) :2674-2677
[9]   Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes [J].
Chen, Xiao-Ling ;
Zhao, Hong-Mei ;
Li, Ping-Xiang ;
Yin, Zhi-Yong .
REMOTE SENSING OF ENVIRONMENT, 2006, 104 (02) :133-146
[10]   Estimation of the all-wave urban surface radiation balance by use of ASTER multispectral imagery and in situ spatial data [J].
Chrysoulakis, N .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D18)