Molecular requirements for the internalisation step of endocytosis: insights from yeast

被引:105
作者
Munn, AL [1 ]
机构
[1] Natl Univ Singapore, Inst Mol Agrobiol, Lab Yeast Cell Biol, Singapore 117604, Singapore
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE | 2001年 / 1535卷 / 03期
关键词
actin; amphiphysin; Arp2/3p; ubiquitin; Wiskott-Aldrich syndrome protein; WASP-interacting protein;
D O I
10.1016/S0925-4439(01)00028-X
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Molecular genetic studies of endocytosis using the unicellular eukaryote Saccharomyces cerevisiae (budding yeast) have led to the identification of many cellular components, both proteins and lipids, required for this process. While initially, many of these requirements (e.g. for actin, various actin-associated proteins, the ubiquitin conjugation system, and for ergosterol and sphingolipids) appeared to differ from known requirements for endocytosis in higher eukaryotes (e.g. clathrin, AP-2, dynamin), it now seems that endocytosis in higher and lower eukaryotes share many requirements. Often, what were initially identified as actin cytoskeleton-associated proteins in S. cerevisiae, are now revealing themselves as clathrin-coated pit- and vesicle-associated proteins in higher eukaryotes. So rather than delineating two endocytic pathways, one actin-based and one clathrin-based. the combined studies on higher and lower eukaryotes are revealing interesting interplay in both systems between the actin cytoskeleton, clathrin coats. and lipids in the formation of endocytic vesicles at the plasma membrane. Recent results from the yeast system show that the Arp2/3p complex, Wiskott-Aldrich syndrome protein (WASP), and WASP-interacting protein (WIP), proteins involved in the nucleation step of actin filament assembly, play a major role in the formation of endocytic vesicles. This discovery suggests models whereby endocytic vesicles may be actively pushed from the plasma membrane and into the cell by newly forming and rapidly extending actin filaments. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:236 / 257
页数:22
相关论文
共 188 条
[1]   DEFINING PROTEIN INTERACTIONS WITH YEAST ACTIN IN-VIVO [J].
AMBERG, DC ;
BASART, E ;
BOTSTEIN, D .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (01) :28-35
[2]   The src homology domain 3 (SH3) of a yeast type I myosin, Myo5p, binds to verprolin and is required for targeting to sites of actin polarization [J].
Anderson, BL ;
Boldogh, I ;
Evangelista, M ;
Boone, C ;
Greene, LA ;
Pon, LA .
JOURNAL OF CELL BIOLOGY, 1998, 141 (06) :1357-1370
[3]  
[Anonymous], 1997, MOL CELL BIOL YEAST
[4]   Two GTPases, cdc42 and rac, bind directly to a protein implicated in the immunodeficiency disorder Wiskott-Aldrich syndrome [J].
Aspenstrom, P ;
Lindberg, U ;
Hall, A .
CURRENT BIOLOGY, 1996, 6 (01) :70-75
[5]   High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A [J].
Ayscough, KR ;
Stryker, J ;
Pokala, N ;
Sanders, M ;
Crews, P ;
Drubin, DG .
JOURNAL OF CELL BIOLOGY, 1997, 137 (02) :399-416
[6]  
Balguerie A, 1999, J CELL SCI, V112, P2529
[7]   SIGNAL PROPAGATION AND REGULATION IN THE MATING PHEROMONE RESPONSE PATHWAY OF THE YEAST SACCHAROMYCES-CEREVISIAE [J].
BARDWELL, L ;
COOK, JG ;
INOUYE, CJ ;
THORNER, J .
DEVELOPMENTAL BIOLOGY, 1994, 166 (02) :363-379
[8]   ALTERATION OF A YEAST SH3 PROTEIN LEADS TO CONDITIONAL VIABILITY WITH DEFECTS IN CYTOSKELETAL AND BUDDING PATTERNS [J].
BAUER, F ;
URDACI, M ;
AIGLE, M ;
CROUZET, M .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (08) :5070-5084
[9]   Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast [J].
Beck, T ;
Schmidt, A ;
Hall, MN .
JOURNAL OF CELL BIOLOGY, 1999, 146 (06) :1227-1237
[10]   THE END3 GENE ENCODES A PROTEIN THAT IS REQUIRED FOR THE INTERNALIZATION STEP OF ENDOCYTOSIS AND FOR ACTIN CYTOSKELETON ORGANIZATION IN YEAST [J].
BENEDETTI, H ;
RATHS, S ;
CRAUSAZ, F ;
RIEZMAN, H .
MOLECULAR BIOLOGY OF THE CELL, 1994, 5 (09) :1023-1037