Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells

被引:156
作者
Kucia, M
Reca, R
Jala, VR
Dawn, B
Ratajczak, J
Ratajczak, MZ [1 ]
机构
[1] Univ Louisville, Stem Cell Biol Program, James Graham Brown Canc Ctr, Louisville, KY 40202 USA
[2] CMUJ, European Stem Cells Therapeut Excellence Ctr, Krakow, Poland
关键词
stem cell plasticity; CXCR4; SDF-1; tissue committed stem cells ( TCSC); mobilization; pluripotent stem cells ( PSC);
D O I
10.1038/sj.leu.2403796
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Evidence is presented that bone marrow (BM) in addition to CD45(positive) hematopoietic stem cells contains a rare population of heterogenous CD45(negative) nonhematopoietic tissue committed stem cells (TCSC). These nonhematopoietic TCSC (i) are enriched in population of CXCR4(+) CD34(+) AC133(+) lin(-) CD45(-) and CXCR4(+) Sca-1(+) lin(-) CD45(-) in humans and mice, respectively, (ii) display several markers of pluripotent stem cells (PSC) and (iii) as we envision are deposited in BM early in development. Thus, since BM contains versatile nonhematopoietic stem cells, previous studies on plasticity trans-dedifferentiation of BM-derived hematopoietic stem cells (HSC) that did not include proper controls to exclude this possibility could lead to wrong interpretations. Therefore, in this spotlight review we present this alternative explanation of 'plasticity' of BM-derived stem cells based on the assumption that BM stem cells are heterogenous. We also discuss a potential relationship of TCSC/PSC identified by us with other BM-derived CD45(negative) nonhematopoietic stem cells that were recently identified by other investigators (eg MSC, MAPC, USSC and MIAMI cells). Finally, we discuss perspectives and pitfalls in potential application of these cells in regenerative medicine.
引用
收藏
页码:1118 / 1127
页数:10
相关论文
共 109 条
[1]   Stromal cell-derived factor-1α plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury [J].
Abbott, JD ;
Huang, Y ;
Liu, D ;
Hickey, R ;
Krause, DS ;
Giordano, FJ .
CIRCULATION, 2004, 110 (21) :3300-3305
[2]   Formation of human hepatocytes by human hematopoietic stem cells in sheep [J].
Almeida-Porada, G ;
Porada, CD ;
Chamberlain, J ;
Torabi, A ;
Zanjani, ED .
BLOOD, 2004, 104 (08) :2582-2590
[3]   Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes [J].
Alvarez-Dolado, M ;
Pardal, R ;
Garcia-Vardugo, JM ;
Fike, JR ;
Lee, HO ;
Pfeffer, K ;
Lois, C ;
Morrison, SJ ;
Alvarez-Buylla, A .
NATURE, 2003, 425 (6961) :968-973
[4]   Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1) [J].
Ara, T ;
Nakamura, Y ;
Egawa, T ;
Sugiyama, T ;
Abe, K ;
Kishimoto, T ;
Matsui, Y ;
Nagasawa, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :5319-5323
[5]   Glial and neuronal cells express functional chemokine receptor CXCR4 and its natural ligand stromal cell-derived factor 1 [J].
Bajetto, A ;
Bonavia, R ;
Barbero, S ;
Piccioli, P ;
Costa, A ;
Florio, T ;
Schettini, G .
JOURNAL OF NEUROCHEMISTRY, 1999, 73 (06) :2348-2357
[6]   Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium [J].
Balsam, LB ;
Wagers, AJ ;
Christensen, JL ;
Kofidis, T ;
Weissman, IL ;
Robbins, RC .
NATURE, 2004, 428 (6983) :668-673
[7]  
Bertoncello Ivan, 2004, Methods Mol Biol, V263, P181
[8]   Bone marrow cells engraft within the epidermis and proliferate in vivo with no evidence of cell fusion [J].
Brittan, M ;
Braun, KM ;
Reynolds, LE ;
Conti, FJ ;
Reynolds, AR ;
Poulsom, R ;
Alison, MR ;
Wright, NA ;
Hodivala-Dilke, KM .
JOURNAL OF PATHOLOGY, 2005, 205 (01) :1-13
[9]   Integrative molecular and developmental biology of adult stem cells [J].
Bunting, KD ;
Hawley, RG .
BIOLOGY OF THE CELL, 2003, 95 (09) :563-578
[10]  
Buzanska L, 2002, J CELL SCI, V115, P2131