On a uniformly accurate finite difference approximation of a singularly perturbed reaction-diffusion problem using grid equidistribution

被引:71
作者
Beckett, G [1 ]
Mackenzie, JA [1 ]
机构
[1] Univ Strathclyde, Dept Math, Glasgow G1 1XH, Lanark, Scotland
关键词
uniform convergence; adaptivity; equidistribution; singular perturbation; reaction-diffusion;
D O I
10.1016/S0377-0427(00)00260-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine the convergence properties of a finite difference approximation of a singularly perturbed reaction-diffusion boundary value problem using a nonuniform grid. The grid is based on the equidistribution of a positive monitor function that is a linear combination of a constant floor and a power of the second derivative of the solution. Analysis shows how the monitor function can be chosen to ensure that the accuracy of the numerical approximation is insensitive to the size of the singular perturbation parameter. The use of equidistribution principles appears in many practical grid adaption schemes and our analysis provides insight into the convergence behaviour on such grids. Numerical results are given that confirm the uniform convergence rates. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:381 / 405
页数:25
相关论文
共 31 条
[1]  
[Anonymous], 1974, LECT NOTES MATH
[2]  
[Anonymous], 1995, FITTED NUMERICAL MET
[3]  
Ascher U.M., 1988, NUMERICAL SOLUTION B
[4]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[5]  
BAKHVALOV NS, 1969, USSR COMP MATH MATH+, V9, P841
[6]  
BECKETT G, IN PRESS APPL NUMER
[7]   ON SIMPLE MOVING GRID METHODS FOR ONE-DIMENSIONAL EVOLUTIONARY PARTIAL-DIFFERENTIAL EQUATIONS [J].
BLOM, JG ;
SANZSERNA, JM ;
VERWER, JG .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 74 (01) :191-213
[8]   NUMERICAL SOLUTION OF BOUNDARY VALUE PROBLEMS USING NONUNIFORM GRIDS [J].
BROWN, RR .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1962, 10 (03) :475-495
[9]  
BUDD CJ, 1998, UNPUB OPTIMAL MESHES
[10]   GRADING FUNCTIONS AND MESH REDISTRIBUTION [J].
CAREY, GF ;
DINH, HT .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (05) :1028-1040