Tailoring the crystal structure of individual silicon nanowires by polarized laser annealing

被引:6
作者
Chang, Chia-Chi [2 ]
Chen, Haitian [1 ]
Chen, Chun-Chung [1 ]
Hung, Wei-Hsuan [3 ]
Hsu, I-Kai [3 ]
Theiss, Jesse [1 ]
Zhou, Chongwu [1 ,2 ]
Cronin, Stephen B. [1 ,2 ]
机构
[1] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[2] Univ So Calif, Dept Phys, Los Angeles, CA 90089 USA
[3] Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USA
关键词
DEPENDENT RAMAN-SCATTERING; NANOCRYSTALS; SPECTRA; GROWTH;
D O I
10.1088/0957-4484/22/30/305709
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We study the effect of polarized laser annealing on the crystalline structure of individual crystalline-amorphous core-shell silicon nanowires (NWs) using Raman spectroscopy. The crystalline fraction of the annealed spot increases dramatically from 0 to 0.93 with increasing incident laser power. We observe Raman lineshape narrowing and frequency hardening upon laser annealing due to the growth of the crystalline core, which is confirmed by high resolution transmission electron microscopy (HRTEM). The anti-Stokes: Stokes Raman intensity ratio is used to determine the local heating temperature caused by the intense focused laser, which exhibits a strong polarization dependence in Si NWs. The most efficient annealing occurs when the laser polarization is aligned along the axis of the NWs, which results in an amorphous-crystalline interface less than 0.5 mu m in length. This paper demonstrates a new approach to control the crystal structure of NWs on the sub-micron length scale.
引用
收藏
页数:7
相关论文
共 27 条
[1]   STRUCTURAL INFORMATION FROM THE RAMAN-SPECTRUM OF AMORPHOUS-SILICON [J].
BEEMAN, D ;
TSU, R ;
THORPE, MF .
PHYSICAL REVIEW B, 1985, 32 (02) :874-878
[2]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[3]   Raman spectra and temperature-dependent Raman scattering of silicon nanowires [J].
Chen, Yiqing ;
Peng, Bo ;
Wang, Bing .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (16) :5855-5858
[4]   Ion beam doping of silicon nanowires [J].
Colli, Alan ;
Fasoli, Andrea ;
Ronning, Carsten ;
Pisana, Simone ;
Piscanec, Stefano ;
Ferrari, Andrea C. .
NANO LETTERS, 2008, 8 (08) :2188-2193
[5]   Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes [J].
Cui, Li-Feng ;
Ruffo, Riccardo ;
Chan, Candace K. ;
Peng, Hailin ;
Cui, Yi .
NANO LETTERS, 2009, 9 (01) :491-495
[6]   Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J].
Cui, Y ;
Lieber, CM .
SCIENCE, 2001, 291 (5505) :851-853
[7]   Si/a-Si core/shell nanowires as nonvolatile crossbar switches [J].
Dong, Yajie ;
Yu, Guihua ;
McAlpine, Michael C. ;
Lu, Wei ;
Lieber, Charles M. .
NANO LETTERS, 2008, 8 (02) :386-391
[8]   Modified Raman confinement model for Si nanocrystals [J].
Faraci, G ;
Gibilisco, S ;
Russo, P ;
Pennisi, AR ;
La Rosa, S .
PHYSICAL REVIEW B, 2006, 73 (03)
[9]   Silicon vertically integrated nanowire field effect transistors [J].
Goldberger, Josh ;
Hochbaum, Allon I. ;
Fan, Rong ;
Yang, Peidong .
NANO LETTERS, 2006, 6 (05) :973-977
[10]   Growth of nanowire superlattice structures for nanoscale photonics and electronics [J].
Gudiksen, MS ;
Lauhon, LJ ;
Wang, J ;
Smith, DC ;
Lieber, CM .
NATURE, 2002, 415 (6872) :617-620