Light trapping with plasmonic particles: beyond the dipole model

被引:65
作者
Beck, Fiona J. [1 ,2 ]
Mokkapati, Sudha [1 ]
Catchpole, Kylie R. [1 ]
机构
[1] Australian Natl Univ, Ctr Sustainable Energy Syst, Coll Engn & Comp Sci, Canberra, ACT 0200, Australia
[2] ICFO Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
来源
OPTICS EXPRESS | 2011年 / 19卷 / 25期
基金
澳大利亚研究理事会;
关键词
FILM SOLAR-CELLS; NANOPARTICLES; ABSORPTION; SCATTERING; SILICON; ENHANCEMENT;
D O I
10.1364/OE.19.025230
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Disk-shaped metal nanoparticles on high-index substrates can support resonant surface plasmon polariton (SPP) modes at the interface between the particle and the substrate. We demonstrate that this new conceptual model of nanoparticle scattering allows clear predictive abilities, beyond the dipole model. As would be expected from the nature of the mode, the SPP resonance is very sensitive to the area in contact with the substrate, and insensitive to particle height. We can employ this new understanding to minimise mode out-coupling and Ohmic losses in the particles. Taking into account optical losses due to parasitic absorption and outcoupling of scattered light, we estimate that an optimal array of nanoparticles on a 2 mu m Si substrate can provide up to 71% of the enhancement in absorption achievable with an ideal Lambertian rear-reflector. This result compares to an estimate of 67% for conventional pyramid-type light trapping schemes. (C) 2011 Optical Society of America
引用
收藏
页码:25230 / 25241
页数:12
相关论文
共 34 条
  • [1] Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes
    Akimov, Yu. A.
    Koh, W. S.
    Ostrikov, K.
    [J]. OPTICS EXPRESS, 2009, 17 (12): : 10195 - 10205
  • [2] Atwater H.A., 2010, Plasmonics for improved photovoltaic devices, V9, P205
  • [3] Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates
    Beck, F. J.
    Verhagen, E.
    Mokkapati, S.
    Polman, A.
    Catchpole, K. R.
    [J]. OPTICS EXPRESS, 2011, 19 (06): : A146 - A156
  • [4] Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles
    Beck, F. J.
    Mokkapati, S.
    Catchpole, K. R.
    [J]. PROGRESS IN PHOTOVOLTAICS, 2010, 18 (07): : 500 - 504
  • [5] Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells
    Beck, F. J.
    Mokkapati, S.
    Polman, A.
    Catchpole, K. R.
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (03)
  • [6] Tunable light trapping for solar cells using localized surface plasmons
    Beck, F. J.
    Polman, A.
    Catchpole, K. R.
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 105 (11)
  • [7] Bohren C.F, 2008, Absorption and Scattering of Light by Small Particles
  • [8] Absorption enhancement due to scattering by dipoles into silicon waveguides
    Catchpole, K. R.
    Pillai, S.
    [J]. JOURNAL OF APPLIED PHYSICS, 2006, 100 (04)
  • [9] Design principles for particle plasmon enhanced solar cells
    Catchpole, K. R.
    Polman, A.
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (19)
  • [10] Catchpole KR, 2008, OPT EXPRESS, V16, P21793, DOI 10.1364/OE.16.021793