Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications

被引:267
作者
Ma, Sang-Bok [1 ]
Nam, Kyung-Wan [2 ]
Yoon, Won-Sub [2 ]
Yang, Xiao-Qing [2 ]
Ahn, Kyun-Young [3 ]
Oh, Ki-Hwan [4 ]
Kim, Kwang-Bum [1 ]
机构
[1] Yonsei Univ, Dept Mat Sci & Engn, Seoul 120749, South Korea
[2] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA
[3] Hyundai ECO Technol Res Inst, Yongin 446912, Gyeonggi Do, South Korea
[4] Seoul Natl Univ, Next Generat Vehicle Technol, Seoul 151742, South Korea
关键词
manganese oxide; carbon nanotube; nanocomposite; electrochemical capacitor;
D O I
10.1016/j.jpowsour.2007.12.027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Birnessite-type manganese dioxide (MnO2) is Coated uniformly on carbon nanotubes (CNTs) by employing a spontaneous direct redox reaction between the CNTs and permanganate ions (MnO4-). The initial specific capacitance of the MnO2/CNT nanocomposite in an organic electrolyte at a large current density of 1 A g(-1) is 250 F g(-1). This is equivalent to 139 mAh g(-1) based on the total weight of the electrode material that includes the electroactive material, conducting agent and binder. The specific capacitance of the MnO2 in the MnO2/CNT nanocomposite is as high as 580 F g(-1) (320 rnAh g(-1)), indicating excellent electrochemical utilization of the MnO2. The addition of CNTs as a conducting agent improves the high-rate capability of the MnO2/CNT nanocomposite considerably. The in situ X-ray absorption near-edge structure (XANES) shows improvement in the structural and electrochemical reversibility of the MnO2/CNT nanocomposite after heat-treatment. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:483 / 489
页数:7
相关论文
共 39 条
[1]   In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries [J].
Balasubramanian, M ;
Sun, X ;
Yang, XQ ;
McBreen, J .
JOURNAL OF POWER SOURCES, 2001, 92 (1-2) :1-8
[2]   Cathodic behavior of alkali manganese oxides from permanganate [J].
Chen, RJ ;
Whittingham, MS .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (04) :L64-L67
[3]  
Conway B. E., 1999, ELECTROCHEMICAL SUPE, DOI [DOI 10.1007/978-1-4757-3058-6, 10.1007/978-1-4757-3058-6]
[4]  
Conway B. E., 1999, ELECTROCHEMICAL SUPE, P221, DOI DOI 10.1007/978-1-4757-3058-6_10
[5]   TRANSITION FROM SUPERCAPACITOR TO BATTERY BEHAVIOR IN ELECTROCHEMICAL ENERGY-STORAGE [J].
CONWAY, BE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (06) :1539-1548
[6]   Modeling of the charge-discharge dynamics of lithium manganese oxide electrodes for lithium-ion batteries [J].
Deiss, E ;
Häringer, D ;
Novák, P ;
Haas, O .
ELECTROCHIMICA ACTA, 2001, 46 (26-27) :4185-4196
[7]   Preparation and characterization of manganese oxide/CNT composites as supercapacitive materials [J].
Fan, Zhen ;
Chen, Jinhua ;
Wang, Mingyong ;
Cui, Kunzai ;
Zhou, Haihui ;
Kuang, Wei .
DIAMOND AND RELATED MATERIALS, 2006, 15 (09) :1478-1483
[8]   Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition:: Implications for electrochemical capacitors [J].
Fischer, Anne E. ;
Pettigrew, Katherine A. ;
Rolison, Debra R. ;
Stroud, Rhonda M. ;
Long, Jeffrey W. .
NANO LETTERS, 2007, 7 (02) :281-286
[9]   Supercapacitor electrodes from multiwalled carbon nanotubes [J].
Frackowiak, E ;
Metenier, K ;
Bertagna, V ;
Beguin, F .
APPLIED PHYSICS LETTERS, 2000, 77 (15) :2421-2423
[10]   Rapid discharge performance of composite electrode of hydrated sodium manganese oxide and acetylene black [J].
Hibino, M ;
Kawaoka, H ;
Zhou, HS ;
Honma, I .
ELECTROCHIMICA ACTA, 2004, 49 (28) :5209-5216