Tuning of magnetic properties in cobalt ferrite nanocrystals

被引:63
作者
Cedeno-Mattei, Y. [1 ]
Perales-Perez, O. [2 ]
Tomar, M. S. [3 ]
Roman, F. [1 ]
Voyles, P. M. [4 ]
Stratton, W. G. [4 ]
机构
[1] Univ Puerto Rico, Dept Chem, Mayaguez, PR 00681 USA
[2] Univ Puerto Rico, Dept Mat Sci & Engn, Mayaguez, PR 00681 USA
[3] Univ Puerto Rico, Dept Phys, Mayaguez, PR 00681 USA
[4] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA
关键词
D O I
10.1063/1.2838215
中图分类号
O59 [应用物理学];
学科分类号
摘要
Cobalt ferrite (CoFe2O4) possesses excellent chemical stability, good mechanical hardness, and a large positive first order crystalline anisotropy constant, making it a promising candidate for magneto-optical recording media. In addition to precise control of the composition and structure of CoFe2O4, its practical application will require the capability to control particle size at the nanoscale. The results of a synthesis approach in which size control is achieved by modifying the oversaturation conditions during ferrite formation in water through a modified coprecipitation approach are reported. X-ray diffraction, transmission electron microscopy (TEM) diffraction, and TEM energy-dispersive x-ray spectroscopy analyses confirmed the formation of the nanoscale cobalt ferrite. M-H measurements verified the strong influence of synthesis conditions on crystal size and hence, on the magnetic properties of ferrite nanocrystals. The room-temperature coercivity values increased from 460 up to 4626 Oe under optimum synthesis conditions determined from a 2(3) factorial design. (C) 2008 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 19 条
[1]   Mn-Zn ferrite nanoparticles for ferrofluid preparation: Study on thermal-magnetic properties [J].
Arulmurugan, R ;
Vaidyanathan, G ;
Sendhilnathan, S ;
Jeyadevan, B .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2006, 298 (02) :83-94
[2]  
Berkowitz A. E., 1959, J APPL PHYS, V30, P8134, DOI [DOI 10.1063/1.2185853, 10.1063/1.2185853]
[3]   Growth dominant co-precipitation process to achieve high coercivity at room temperature in CoFe2O4 nanoparticles [J].
Chinnasamy, CN ;
Jeyadevan, B ;
Perales-Perez, O ;
Shinoda, K ;
Tohji, K ;
Kasuya, A .
IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (05) :2640-2642
[4]   Comparative study of the microstructural and magnetic properties of spinel ferrites obtained by co-precipitation [J].
Gonzalez-Sandoval, MP ;
Beesley, AM ;
Miki-Yoshida, M ;
Fuentes-Cobas, L ;
Matutes-Aquino, JA .
JOURNAL OF ALLOYS AND COMPOUNDS, 2004, 369 (1-2) :190-194
[5]   Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals [J].
Hyeon, T ;
Chung, Y ;
Park, J ;
Lee, SS ;
Kim, YW ;
Park, BH .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (27) :6831-6833
[6]   Magnetic nanocomposites: Preparation and characterization of Co-ferrite nanoparticles [J].
Khedr, M. H. ;
Omar, A. A. ;
Abdel-Moaty, S. A. .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2006, 281 (1-3) :8-14
[7]   MAGNETIC BEHAVIOUR OF SINGLE-DOMAIN PARTICLES [J].
LEE, EW ;
BISHOP, JEL .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1966, 89 (565P) :661-&
[8]   Growth of ultra-fine cobalt ferrite particles by a sol-gel method and their magnetic properties [J].
Lee, JG ;
Park, JY ;
Kim, CS .
JOURNAL OF MATERIALS SCIENCE, 1998, 33 (15) :3965-3968
[9]   Cobalt-ferrite nanoparticles: Structure, cation distributions, and magnetic properties [J].
Li, SC ;
John, VT ;
O'Connor, C ;
Harris, V ;
Carpenter, E .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (09) :6223-6225
[10]   THE KINETICS OF PRECIPITATION FROM SUPERSATURATED SOLID SOLUTIONS [J].
LIFSHITZ, IM ;
SLYOZOV, VV .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1961, 19 (1-2) :35-50