Golgi complex reorganization during muscle differentiation: Visualization in living cells and mechanism

被引:85
作者
Lu, ZM
Joseph, D
Bugnard, E
Zaal, KJM
Ralston, E [1 ]
机构
[1] NINDS, Neurobiol Lab, NIH, Bethesda, MD 20892 USA
[2] NICHHD, Cell Biol & Metab Branch, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1091/mbc.12.4.795
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
During skeletal muscle differentiation, the Golgi complex (GC) undergoes a dramatic reorganization. We have now visualized the differentiation and fusion of living myoblasts of the mouse muscle cell line C2, permanently expressing a mannosidase-green fluorescent protein (GFP) construct. These experiments reveal that the reorganization of the GC is progressive (1-2 h) and is completed before the cells start fusing. Fluorescence recovery after photobleaching (FRAP), immunofluorescence, and immunogold electron microscopy demonstrate that the GC is fragmented into elements localized near the endoplasmic reticulum (ER) exit sites. FRAP analysis and the ER relocation of endogenous GC proteins by phospholipase A2 inhibitors demonstrate that Golgi-ER cycling of resident GC proteins takes place in both myoblasts and myotubes. All results support a model in which the GC reorganization in muscle reflects changes in the Golgi-ER cycling. The mechanism is similar to that leading to the dispersal of the GC caused, in all mammalian cells, by microtubule-disrupting drugs. We propose that the trigger for the dispersal results, in muscle, from combined changes in microtubule nucleation and ER exit site localization, which place the ER exit sites near microtubule minus ends. Thus, changes in GC organization that initially appear specific to muscle cells, iri fact use pathways common to all mammalian cells.
引用
收藏
页码:795 / 808
页数:14
相关论文
共 54 条
[1]   Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis [J].
Andres, V ;
Walsh, K .
JOURNAL OF CELL BIOLOGY, 1996, 132 (04) :657-666
[2]   Cargo can modulate COPII vesicle formation from the endoplasmic reticulum [J].
Aridor, M ;
Bannykh, SI ;
Rowe, T ;
Balch, WE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (07) :4389-4399
[3]   SEQUENTIAL COUPLING BETWEEN COPII AND COPI VESICLE COATS IN ENDOPLASMIC-RETICULUM TO GOLGI TRANSPORT [J].
ARIDOR, M ;
BANNYKH, SI ;
ROWE, T ;
BALCH, WE .
JOURNAL OF CELL BIOLOGY, 1995, 131 (04) :875-893
[4]   The organization of endoplasmic reticulum export complexes [J].
Bannykh, SI ;
Rowe, T ;
Balch, WE .
JOURNAL OF CELL BIOLOGY, 1996, 135 (01) :19-35
[5]   COPII and selective export from the endoplasmic reticulum [J].
Barlowe, C .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 1998, 1404 (1-2) :67-76
[6]  
BERSHADSKY AD, 1993, SYM SOC EXP BIOL, V47, P353
[7]   Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution [J].
Burkhardt, JK ;
Echeverri, CJ ;
Nilsson, T ;
Vallee, RB .
JOURNAL OF CELL BIOLOGY, 1997, 139 (02) :469-484
[8]   Golgi dispersal during microtubule disruption: Regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites [J].
Cole, NB ;
Sciaky, N ;
Marotta, A ;
Song, J ;
LippincottSchwartz, J .
MOLECULAR BIOLOGY OF THE CELL, 1996, 7 (04) :631-650
[9]   Retrograde transport of Golgi-localized proteins to the ER [J].
Cole, NB ;
Ellenberg, J ;
Song, J ;
DiEuliis, D ;
Lippincott-Schwartz, J .
JOURNAL OF CELL BIOLOGY, 1998, 140 (01) :1-15
[10]   Diffusional mobility of Golgi proteins in membranes of living cells [J].
Cole, NB ;
Smith, CL ;
Sciaky, N ;
Terasaki, M ;
Edidin, M ;
LippincottSchwartz, J .
SCIENCE, 1996, 273 (5276) :797-801