Design, structure and stability of a hyperthermophilic protein variant

被引:298
作者
Malakauskas, SM
Mayo, SL
机构
[1] CALTECH, Howard Hughes Med Inst, Pasadena, CA 91125 USA
[2] CALTECH, Div Biol, Pasadena, CA 91125 USA
关键词
D O I
10.1038/nsb0698-470
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Here we report the use of an objective computer algorithm in the design of a hyperstable variant of the Streptococcal protein G beta 1 domain (G beta 1). The designed seven-fold mutant, G beta 1-c3b4. has a melting temperature in excess of 100 degrees C and an enhancement in thermodynamic stability of 4.3 kcal mol(-1) at 50 degrees C over the wild-type protein. G beta 1-c3b4 maintains the G beta 1 fold, as determined by nuclear magnetic resonance spectroscopy, and also retains a significant level of binding to human IgG in qualitative comparisons with wild type. The basis of the stability enhancement appears to have multiple components including optimized core packing, increased burial of hydrophobic surface area, more favorable helix dipole interactions, and improvement of secondary structure propensity. The design algorithm is able to model such complex contributions simultaneously using empirical physical/chemical potential functions and a combinatorial optimization algorithm based on the dead-end elimination theorem. Because the design methodology is based on general principles, there is the potential of applying the methodology to the stabilization of other unrelated protein folds.
引用
收藏
页码:470 / 475
页数:6
相关论文
共 47 条
[1]   THERMODYNAMIC ANALYSIS OF THE FOLDING OF THE STREPTOCOCCAL PROTEIN-G IGG-BINDING DOMAINS B1 AND B2 - WHY SMALL PROTEINS TEND TO HAVE HIGH DENATURATION TEMPERATURES [J].
ALEXANDER, P ;
FAHNESTOCK, S ;
LEE, T ;
ORBAN, J ;
BRYAN, P .
BIOCHEMISTRY, 1992, 31 (14) :3597-3603
[2]   MLEV-17-BASED TWO-DIMENSIONAL HOMONUCLEAR MAGNETIZATION TRANSFER SPECTROSCOPY [J].
BAX, A ;
DAVIS, DG .
JOURNAL OF MAGNETIC RESONANCE, 1985, 65 (02) :355-360
[3]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[4]  
Brunger A. T., 1992, X PLOR VERSION 3 1 S
[5]   Protein design automation [J].
Dahiyat, BI ;
Mayo, SL .
PROTEIN SCIENCE, 1996, 5 (05) :895-903
[6]   Probing the role of packing specificity in protein design [J].
Dahiyat, BI ;
Mayo, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (19) :10172-10177
[7]   Automated design of the surface positions of protein helices [J].
Dahiyat, BI ;
Gordon, DB ;
Mayo, SL .
PROTEIN SCIENCE, 1997, 6 (06) :1333-1337
[8]   De novo protein design: Towards fully automated sequence selection [J].
Dahiyat, BI ;
Sarisky, CA ;
Mayo, SL .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 273 (04) :789-796
[9]   De novo protein design: Fully automated sequence selection [J].
Dahiyat, BI ;
Mayo, SL .
SCIENCE, 1997, 278 (5335) :82-87
[10]  
DeMaeyer M, 1997, FOLD DES, V2, P53