Atomic force microscopy detects changes in the interaction forces between GroEL and substrate proteins

被引:77
作者
Vinckier, A
Gervasoni, P
Zaugg, F
Ziegler, U
Lindner, P
Groscurth, P
Plückthun, A
Semenza, G
机构
[1] Univ Zurich, Inst Biochem, CH-8057 Zurich, Switzerland
[2] ETH Zentrum, Swiss Fed Inst Technol, Dept Biochem, CH-8092 Zurich, Switzerland
[3] Univ Milan, Dipartimento Chim & Biochim Med, I-20133 Milan, Italy
关键词
D O I
10.1016/S0006-3495(98)78032-4
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The structure of the Escherichia coli chaperonin GroEL has been investigated by tapping-mode atomic force microscopy (AFM) under liquid. High-resolution images can be obtained, which show the up-right position of GroEL adsorbed on mica with the substrate-binding site on top. Because of this orientation, the interaction between GroEL and two substrate proteins, citrate synthase from Saccharomyces cerevisiae with a destabilizing Gly-->Ala mutation and RTEM beta-lactamase from Escherichia coli with two Cys-->Ala mutations, could be studied by force spectroscopy under different conditions. The results show that the interaction force decreases in the presence of ATP (but not of ATP gamma S) and that the force is smaller for native-like proteins than for the fully denatured ones. It also demonstrates that the interaction energy with GroEL increases with increasing molecular weight. By measuring the interaction force changes between the chaperonin and the two different substrate proteins, we could specifically detect GroEL conformational changes upon nucleotide binding.
引用
收藏
页码:3256 / 3263
页数:8
相关论文
共 61 条
[1]   Inter-ring communication is disrupted in the GroEL mutant Arg13->Gly; Ala126->Val with known crystal structure [J].
Aharoni, A ;
Horovitz, A .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 258 (05) :732-735
[2]   In situ observation of streptavidin-biotin binding on an immunoassay well surface using an atomic force microscope [J].
Allen, S ;
Davies, J ;
Dawkes, AC ;
Davies, MC ;
Edwards, JC ;
Parker, MC ;
Roberts, CJ ;
Sefton, J ;
Tendler, SJB ;
Williams, PM .
FEBS LETTERS, 1996, 390 (02) :161-164
[3]   Detection of antigen-antibody binding events with the atomic force microscope [J].
Allen, S ;
Chen, XY ;
Davies, J ;
Davies, MC ;
Dawkes, AC ;
Edwards, JC ;
Roberts, CJ ;
Sefton, J ;
Tendler, SJB ;
Williams, PM .
BIOCHEMISTRY, 1997, 36 (24) :7457-7463
[4]   Calorimetric observation of a GroEL-protein binding reaction with little contribution of hydrophobic interaction [J].
Aoki, K ;
Taguchi, H ;
Shindo, Y ;
Yoshida, M ;
Ogasahara, K ;
Yutani, K ;
Tanaka, N .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (51) :32158-32162
[5]   The 2.4 angstrom crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S [J].
Boisvert, DC ;
Wang, JM ;
Otwinowski, Z ;
Horwich, AL ;
Sigler, PB .
NATURE STRUCTURAL BIOLOGY, 1996, 3 (02) :170-177
[6]   DIRECT MEASUREMENT OF HYDROGEN-BONDING IN DNA NUCLEOTIDE BASES BY ATOMIC-FORCE MICROSCOPY [J].
BOLAND, T ;
RATNER, BD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (12) :5297-5301
[7]   THE CRYSTAL-STRUCTURE OF THE BACTERIAL CHAPERONIN GROEL AT 2.8-ANGSTROM [J].
BRAIG, K ;
OTWINOWSKI, Z ;
HEGDE, R ;
BOISVERT, DC ;
JOACHIMIAK, A ;
HORWICH, AL ;
SIGLER, PB .
NATURE, 1994, 371 (6498) :578-586
[8]   THE ORIGINS AND CONSEQUENCES OF ASYMMETRY IN THE CHAPERONIN REACTION CYCLE [J].
BURSTON, SG ;
RANSON, NA ;
CLARKE, AR .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 249 (01) :138-152
[9]   LOCATION OF A FOLDING PROTEIN AND SHAPE CHANGES IN GROEL-GROES COMPLEXES IMAGED BY CRYOELECTRON MICROSCOPY [J].
CHEN, S ;
ROSEMAN, AM ;
HUNTER, AS ;
WOOD, SP ;
BURSTON, SG ;
RANSON, NA ;
CLARKE, AR ;
SAIBIL, HR .
NATURE, 1994, 371 (6494) :261-264
[10]   A NONDESTRUCTIVE METHOD FOR DETERMINING THE SPRING CONSTANT OF CANTILEVERS FOR SCANNING FORCE MICROSCOPY [J].
CLEVELAND, JP ;
MANNE, S ;
BOCEK, D ;
HANSMA, PK .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1993, 64 (02) :403-405