Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana

被引:241
作者
Nilsson, Lena [1 ]
Mueller, Renate [1 ]
Nielsen, Tom Hamborg [1 ]
机构
[1] Univ Copenhagen, Fac Life Sci, Plant Biochem Lab, DK-1871 Frederiksberg C, Denmark
关键词
carbohydrate metabolism; phosphorus; regulation;
D O I
10.1111/j.1365-3040.2007.01734.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plants have evolved a number of adaptive strategies to cope with fluctuations in phosphorus (P) supply. The current knowledge of the transcriptional regulation of the P-starvation response in plants is limited. However, one MYB-related transcription factor, PHR1, is known to be involved in the P-starvation response. In this paper, we characterize a T-tagged phr1 knockout mutant and a series of transgenic plant lines which over-express PHR1 in wild type (WT) and phr1 mutant background. The knockout mutant has an altered phosphate (P-i) allocation between root and shoot; accumulates less anthocyanins, sugars and starch than P-starved WT; has a lower AGPase activity; and is impaired in induction of a subset of P-i starvation-induced genes. Expression of PHR1 in the phr1 mutant rescues the responsiveness to P-starvation and leads to WT levels of sugars and starch during P-i starvation conditions, confirming the involvement of PHR1 in adjusting carbon metabolism. Over-expression of PHR1 further resulted in a dramatic increase in the microRNA miR399d, and this resulted in changes in the transcript level for the target gene PHO2. Furthermore, over-expression of PHR1 in both WT and phr1 mutant results in strongly increased content of P-i irrespective of P regime. This shows that targeting a key regulatory element in the P-i starvation regulatory network represents a useful approach for molecular breeding of plants towards more efficient P-i uptake and assimilation.
引用
收藏
页码:1499 / 1512
页数:14
相关论文
共 60 条
[1]   Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic activity during phosphate starvation of cultured tomato cells [J].
Abel, S ;
Nürnberger, T ;
Ahnert, V ;
Krauss, GJ ;
Glund, K .
PLANT PHYSIOLOGY, 2000, 122 (02) :543-552
[2]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[3]   pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a MicroRNA399 target gene [J].
Aung, Kyaw ;
Lin, Shu-I ;
Wu, Chia-Chune ;
Huang, Yu-Ting ;
Su, Chun-Lin ;
Chiou, Tzyy-Jen .
PLANT PHYSIOLOGY, 2006, 141 (03) :1000-1011
[4]   ADP-glucose pyrophosphorylase: a regulatory enzyme for plant starch synthesis [J].
Ballicora, MA ;
Iglesias, AA ;
Preiss, J .
PHOTOSYNTHESIS RESEARCH, 2004, 79 (01) :1-24
[5]   PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants [J].
Bari, Rajendra ;
Pant, Bikram Datt ;
Stitt, Mark ;
Scheible, Wolf-Ruediger .
PLANT PHYSIOLOGY, 2006, 141 (03) :988-999
[6]   THE ARABIDOPSIS RIBONUCLEASE GENE RNS1 IS TIGHTLY CONTROLLED IN RESPONSE TO PHOSPHATE LIMITATION [J].
BARIOLA, PA ;
HOWARD, CJ ;
TAYLOR, CB ;
VERBURG, MT ;
JAGLAN, VD ;
GREEN, PJ .
PLANT JOURNAL, 1994, 6 (05) :673-685
[7]   Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability [J].
Bates, TR ;
Lynch, JP .
PLANT CELL AND ENVIRONMENT, 1996, 19 (05) :529-538
[8]  
BEUTLER HO, 1984, METHOD ENZYMAT AN, V6, P331
[9]   APL regulates vascular tissue identity in Arabidopsis [J].
Bonke, M ;
Thitamadee, S ;
Mähönen, AP ;
Hauser, MT ;
Helariutta, Y .
NATURE, 2003, 426 (6963) :181-186
[10]   The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots [J].
Burleigh, SH ;
Harrison, MJ .
PLANT PHYSIOLOGY, 1999, 119 (01) :241-248