Boosting and instability for regression trees

被引:20
作者
Gey, S
Poggi, JM
机构
[1] Univ Paris 05, Lab MAP5, F-75006 Paris, France
[2] Univ Paris 11, Math Lab, UMR 8628, F-91405 Orsay, France
关键词
bagging; boosting; CART; instability; prediction; regression;
D O I
10.1016/j.csda.2004.09.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The AdaBoost like algorithm for boosting CART regression trees is considered. The boosting predictors sequence is analysed on various data sets and the behaviour of the algorithm is investigated. An instability index of a given estimation method with respect to some training sample is defined. Based on the bagging algorithm, this instability index is then extended to quantify the additional instability provided by the boosting process with respect to the bagging one. Finally, the ability of boosting to track outliers and to concentrate on hard observations is used to explore a non-standard regression context. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:533 / 550
页数:18
相关论文
共 23 条
[1]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[2]   Improving nonparametric regression methods by bagging and boosting [J].
Borra, S ;
Di Ciaccio, A .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 38 (04) :407-420
[3]   Stability and generalization [J].
Bousquet, O ;
Elisseeff, A .
JOURNAL OF MACHINE LEARNING RESEARCH, 2002, 2 (03) :499-526
[4]  
Breiman L, 1996, ANN STAT, V24, P2350
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]  
Breiman L, 1998, ANN STAT, V26, P801
[8]  
Bühlmann P, 2002, ANN STAT, V30, P927
[9]  
Cheze N., 2003, STAT INFER STOCH PRO, V6, P155, DOI DOI 10.1023/A:1023940117323
[10]  
Drucker H., 1997, ICML 97, P107