Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries

被引:844
作者
Asano, Tetsuya [1 ]
Sakai, Akihiro [1 ]
Ouchi, Satoru [1 ]
Sakaida, Masashi [1 ]
Miyazaki, Akinobu [1 ]
Hasegawa, Shinya [1 ]
机构
[1] Panasonic Corp, Technol Innovat Div, 1006 Kadoma, Kadoma, Osaka 5718508, Japan
关键词
all-solid-state batteries; halide solid electrolytes; lithium-ion conductors; solid-state ionics; yttrium halides; 3-DIMENSIONAL VISUALIZATION; STABILITY; INSIGHTS; CRYSTAL; GLASS;
D O I
10.1002/adma.201803075
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
New lithium halide solid-electrolyte materials, Li3YCl6 and Li3YBr6, are found to exhibit high lithium-ion conductivity, high deformability, and high chemical and electrochemical stability, which are required properties for all-solid-state battery (ASSB) applications, particularly for large-scale deployment. The lithium-ion conductivities of cold-pressed powders surpass 1 mS cm(-1) at room temperature without additional intergrain or grain boundary resistances. Bulk-type ASSB cells employing these new halide solid electrolyte materials exhibit coulombic efficiencies as high as 94% with an active cathode material of LiCoO2 without any extra coating. These superior electrochemical characteristics, as well as their material stability, indicate that lithium halide salts are another promising candidate for ASSB solid electrolytes in addition to sulfides or oxides.
引用
收藏
页数:7
相关论文
共 49 条
[1]   Fast Li-circle plus conducting ceramic electrolytes [J].
Adachi, GY ;
Imanaka, N ;
Aono, H .
ADVANCED MATERIALS, 1996, 8 (02) :127-+
[2]   High power lithium ion battery materials by computational design [J].
Adams, Stefan ;
Rao, R. Prasada .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (08) :1746-1753
[3]  
[Anonymous], UNPUB
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]  
ASHCROFT NW, 1976, SOLID STATE PHYS, P533
[6]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[7]   Atmosphere Controlled Processing of Ga-Substituted Garnets for High Li-Ion Conductivity Ceramics [J].
Bernuy-Lopez, Carlos ;
Manalastas, William, Jr. ;
Lopez del Amo, Juan Miguel ;
Aguadero, Ainara ;
Aguesse, Frederic ;
Kilner, John A. .
CHEMISTRY OF MATERIALS, 2014, 26 (12) :3610-3617
[8]   Bond softness sensitive bond-valence parameters for crystal structure plausibility tests [J].
Chen, Haomin ;
Adams, Stefan .
IUCRJ, 2017, 4 :614-625
[9]   Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li4SiO4-Li3PO4 Solid Electrolytes [J].
Deng, Yue ;
Eames, Christopher ;
Chotard, Jean-Noel ;
Lalere, Fabien ;
Seznec, Vincent ;
Emge, Steffen ;
Pecher, Oliver ;
Grey, Clare P. ;
Masquelier, Christian ;
Islam, M. Saiful .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (28) :9136-9145
[10]   Accelerated Materials Design of Lithium Superionic Conductors Based on First-Principles Calculations and Machine Learning Algorithms [J].
Fujimura, Koji ;
Seko, Atsuto ;
Koyama, Yukinori ;
Kuwabara, Akihide ;
Kishida, Ippei ;
Shitara, Kazuki ;
Fisher, Craig A. J. ;
Moriwake, Hiroki ;
Tanaka, Isao .
ADVANCED ENERGY MATERIALS, 2013, 3 (08) :980-985