Quantum brownian motion on a triangular lattice and c=2 boundary conformal field theory

被引:60
作者
Affleck, I
Oshikawa, M
Saleur, H
机构
[1] Univ So Calif, CIT, Ctr Theoret Phys, Los Angeles, CA 90089 USA
[2] Univ Calif Santa Barbara, Inst Theoret Phys, Santa Barbara, CA 93106 USA
[3] Univ British Columbia, Canadian Inst Adv Res, Vancouver, BC V6T 1Z1, Canada
[4] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
[5] CENS, SPhT, F-91191 Gif Sur Yvette, France
[6] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan
关键词
D O I
10.1016/S0550-3213(00)00499-5
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study a single particle diffusing on a triangular lattice and interacting with a heat bath. using boundary conformal field theory (CFT) and exact integrability techniques. We derive a correspondence between the phase diagram of this problem and that recently obtained for the 2-dimensional 3-state Potts model with a boundary. Exact results are obtained on phases with intermediate mobilities. These correspond to nontrivial boundary states in a conformal held theory with 2 free bosons which we explicitly construct for the first time. These conformally invariant boundary conditions are nut simply products of Dirichlet and Neumann ones and unlike those trivial boundary conditions, are not invariant under a Heisenberg algebra. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:535 / 606
页数:72
相关论文
共 54 条
[1]   Edge critical behaviour of the two-dimensional tri-critical Ising model [J].
Affleck, I .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (37) :6473-6479
[2]   UNIVERSAL NONINTEGER GROUND-STATE DEGENERACY IN CRITICAL QUANTUM-SYSTEMS [J].
AFFLECK, I ;
LUDWIG, AWW .
PHYSICAL REVIEW LETTERS, 1991, 67 (02) :161-164
[3]  
Affleck I, 1995, ACTA PHYS POL B, V26, P1869
[4]   Boundary critical phenomena in the three-state Potts model [J].
Affleck, I ;
Oshikawa, M ;
Saleur, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (28) :5827-5842
[5]  
AFFLECK I, CONDMAT0011454
[6]   Boundary flows in general coset theories [J].
Ahn, C ;
Rim, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (13) :2509-2525
[7]   FRACTIONAL SUPERSYMMETRIES IN PERTURBED COSET CFTS AND INTEGRABLE SOLITON THEORY [J].
AHN, C ;
BERNARD, D ;
LECLAIR, A .
NUCLEAR PHYSICS B, 1990, 346 (2-3) :409-439
[8]  
[Anonymous], SOV SCI REV PHYS A
[9]   On the classification of bulk and boundary conformal field theories [J].
Behrend, RE ;
Pearce, PA ;
Petkova, VB ;
Zuber, JB .
PHYSICS LETTERS B, 1998, 444 (1-2) :163-166
[10]   Boundary conditions in rational conformal field theories (vol B570, pg 525, 2000) [J].
Behrend, RE ;
Pearce, PA ;
Petkova, VB ;
Zuber, JB .
NUCLEAR PHYSICS B, 2000, 579 (03) :707-773