Large-deviations estimates in Burgers turbulence with stable noise initial data

被引:10
作者
Bertoin, J [1 ]
机构
[1] Univ Paris 06, Probabil Lab, F-75252 Paris 05, France
关键词
inviscid Burgers equation; random initial velocity; large deviations;
D O I
10.1023/A:1023081728243
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the inviscid Burgers equation where the initial datum is given by a stable (Levy) noise. The asymptotic behavior of the tail distribution of the solution is described; the decay is much faster in the case when the stable noise is completely skewed to the left.
引用
收藏
页码:655 / 667
页数:13
相关论文
共 21 条
[1]   STATISTICAL PROPERTIES OF SHOCKS IN BURGERS TURBULENCE .2. TALL PROBABILITIES FOR VELOCITIES, SHOCK-STRENGTHS AND RAREFACTION INTERVALS [J].
AVELLANEDA, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 169 (01) :45-59
[2]   STATISTICAL PROPERTIES OF SHOCKS IN BURGERS TURBULENCE [J].
AVELLANEDA, M ;
WEINAN, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (01) :13-38
[3]  
BERTOIN J., 1998, Levy Processes
[4]  
Burgers J M, 1974, NONLINEAR DIFFUSION, DOI DOI 10.1007/978-94-010-1745-9
[5]  
CHORIN AJ, 1975, LECT TURBULENCE THEO
[6]   ON A QUASI-LINEAR PARABOLIC EQUATION OCCURRING IN AERODYNAMICS [J].
COLE, JD .
QUARTERLY OF APPLIED MATHEMATICS, 1951, 9 (03) :225-236
[7]   LIMIT THEORY FOR MOVING AVERAGES OF RANDOM-VARIABLES WITH REGULARLY VARYING TAIL PROBABILITIES [J].
DAVIS, R ;
RESNICK, S .
ANNALS OF PROBABILITY, 1985, 13 (01) :179-195
[8]  
DELLACHERIE C, 1980, PROBABILITES POTENTI, V2
[9]   GIBBS-COX RANDOM FIELDS AND BURGERS TURBULENCE [J].
Funaki, T. ;
Surgailis, D. ;
Woyczynski, W. A. .
ANNALS OF APPLIED PROBABILITY, 1995, 5 (02) :461-492
[10]  
Gnedenko BV., 1954, LIMIT DISTRIBUTIONS