Antimutagenic role of base-excision repair enzymes upon free radical-induced DNA damage

被引:79
作者
Laval, J [1 ]
Jurado, J [1 ]
Saparbaev, M [1 ]
Sidorkina, O [1 ]
机构
[1] Inst Gustave Roussy, Grp Reparat Les Radio & Chimioinduites, CNRS, URA 147, F-94805 Villejuif, France
关键词
C-8-oxoguanine; Fpg protein; OGG1; protein; beta-lyase; ethenobase;
D O I
10.1016/S0027-5107(97)00286-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
As a consequence of oxidative stress, reactive oxygen species are generated in the cells. They interact with DNA and induce various modifications. Among them, oxidised purines (such as C-8-oxoguanine and purines whose imidazole ring is opened), oxidised pyrimidines (such as thymine and cytosine glycols, ring saturated and fragmented pyrimidines), ethenobases and hypoxanthine. These various lesions have either miscoding properties or are blocks for DNA and RNA polymerases during replication and transcription, respectively. Most of these lesions are repaired by the base excision pathway in which the first step is mediated by specific DNA glycosylases. We review the various glycosylases involved in the repair of oxidised bases in Escherichia coli. The Fpg protein (formamidopyrimidine-DNA glycosylase) contains a zinc finger and excises oxidised purines whereas the Nth protein excises oxidised pyrimidines. The Nei protein excises a comparable spectra of pyrimidines and is believed to act as a back up enzyme to the Nth protein. The hypoxanthine-DNA glycosylase excises hypoxanthine residue and is one of the various activities of the AlkA protein (including formyluracil and ethenopurines residues). The Nfo protein was shown to have a novel activity that incises 5' to an alpha-deoxyadenosine residue (the anomer of deoxyadenosine formed by gamma-irradiation). The mechanism of action of the Fpg and Nth proteins are discussed. The properties of the human counterpart of the Fpg and Nth proteins the hNth and OGG1 proteins, respectively are also reviewed. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:93 / 102
页数:10
相关论文
共 119 条
[1]  
Aburatani H, 1997, CANCER RES, V57, P2151
[2]   Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage [J].
Arai, K ;
Morishita, K ;
Shinmura, K ;
Kohno, T ;
Kim, SR ;
Nohmi, T ;
Taniwaki, M ;
Ohwada, S ;
Yokota, J .
ONCOGENE, 1997, 14 (23) :2857-2861
[3]   PURIFICATION AND CHARACTERIZATION OF ESCHERICHIA-COLI ENDONUCLEASE-III FROM THE CLONED NTH GENE [J].
ASAHARA, H ;
WISTORT, PM ;
BANK, JF ;
BAKERIAN, RH ;
CUNNINGHAM, RP .
BIOCHEMISTRY, 1989, 28 (10) :4444-4449
[4]   Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III [J].
Aspinwall, R ;
Rothwell, DG ;
RoldanArjona, T ;
Anselmino, C ;
Ward, CJ ;
Cheadle, JP ;
Sampson, JR ;
Lindahl, T ;
Harris, PC ;
Hickson, ID .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (01) :109-114
[5]   ESCHERICHIA-COLI ENDONUCLEASE-III IS NOT AN ENDONUCLEASE BUT A BETA-ELIMINATION CATALYST [J].
BAILLY, V ;
VERLY, WG .
BIOCHEMICAL JOURNAL, 1987, 242 (02) :565-572
[6]   MECHANISM OF DNA STRAND NICKING AT APURINIC APYRIMIDINIC SITES BY ESCHERICHIA-COLI [FORMAMIDOPYRIMIDINE]DNA GLYCOSYLASE [J].
BAILLY, V ;
VERLY, WG ;
OCONNOR, T ;
LAVAL, J .
BIOCHEMICAL JOURNAL, 1989, 262 (02) :581-589
[7]   Oxidative decay of DNA [J].
Beckman, KB ;
Ames, BN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (32) :19633-19636
[8]   REPAIR OF 8-HYDROXYGUANINE IN DNA BY MAMMALIAN N-METHYLPURINE-DNA GLYCOSYLASE [J].
BESSHO, T ;
ROY, R ;
YAMAMOTO, K ;
KASAI, H ;
NISHIMURA, S ;
TANO, K ;
MITRA, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (19) :8901-8904
[9]   OXIDATION OF THYMINE TO 5-FORMYLURACIL IN DNA - MECHANISMS OF FORMATION, STRUCTURAL IMPLICATIONS, AND BASE EXCISION BY HUMAN CELL-FREE-EXTRACTS [J].
BJELLAND, S ;
EIDE, L ;
TIME, RW ;
STOTE, R ;
EFTEDAL, I ;
VOLDEN, G ;
SEEBERG, E .
BIOCHEMISTRY, 1995, 34 (45) :14758-14764
[10]  
BJELLAND S, 1994, J BIOL CHEM, V269, P30489